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ABSTRACT
Using large language models (LLMs) for tasks like text-to-SQL

translation often requires describing the database schema as part of

the model input. LLM providers typically charge as a function of the

number of tokens read. Hence, reducing the length of the schema

description saves money at each model invocation. This paper

introduces Schemonic, a system that automatically finds concise

text descriptions of relational database schemata. By introducing

abbreviations or grouping schema elements with similar properties,

Schemonic typically finds descriptions that use significantly fewer

tokens than naive schema representations.

Internally, Schemonic models schema compression as a combina-

torial optimization problem and uses integer linear programming

solvers to find guaranteed optimal or near-optimal solutions. It

speeds up optimization by starting optimization from heuristic so-

lutions and reducing the search space size via pre-processing. The

experiments on TPC-H, SPIDER, and Public-BI demonstrate that

Schemonic reduces schema description length significantly, along

with fees for reading them, without reducing the accuracy in tasks

such as text-to-SQL translation.
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1 INTRODUCTION
Large language models (LLMs) such as GPT-4 have a wide range

of applications in the context of data management, including tasks

like text-to-SQL translation as well as information extraction. Quite

often, solving such tasks requires describing the schema of a rela-

tional database to the LLM as part of the input prompt (describing

the task to solve as natural language text to the model). Language

models like OpenAI’s GPT or Anthropic’s Claude are nowadays

able to process large amounts of input, up to hundreds of pages of

text. In principle, this enables their use even for databases with large
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schemata. However, doing so is expensive since LLM providers typ-

ically charge processing fees that are proportional to the length

of the input (and output) text, measured as the number of tokens

(the atomic units used by the LLM for text representation)
1
. This

paper addresses the problem of generating concise descriptions of

database schemata, suitable as input for LLMs. By reducing the size

of the schema description, users save significant amounts of money

in each LLM invocation that refers to the compressed schema.

Example 1.1. Text-to-SQL translation is a classical use case for

large languagemodels. In this scenario, themodel input (the prompt)

integrates the text question to translate, as well as a description of

the database schema [12]. A longer schema description increases

the number of tokens in the prompt and, therefore, for providers

such as OpenAI, Anthropic, or Cohere, the cost for each text-to-

SQL translation. A common method [33] is to describe schemata by

their DDL commands, shown for an example schema in Figure 1a.

Using the more concise description of the same schema in Fig-

ure 1b instead decreases costs. It uses multiple levels of nesting to

describe the database schema. The outermost pair of brackets con-

tains columns associated with the Students table. Inner brackets
group columns that share the same type (e.g., varchar(255)) or the
same constraints (NOT NULL). As demonstrated in Section 8.3, large

language models are able to understand such schema descriptions.

Figure 1c reduces costs further by introducing abbreviations. More

precisely, it introduces the asterisk symbol (*) to abbreviate the

column name prefix UniStu_. Schemonic takes raw schemata as in

Figure 1a as input and produces more concise schema descriptions

like the one in Figure 1c as output, enabling cost savings.

This paper introduces Schemonic (a portmanteau of “schema”

and “laconic”), a system that finds concise text descriptions of data-

base schemata automatically. Schemonic exploits the opportunities

to shorten schema descriptions, illustrated in Figure 1. It mod-

els schema compression as a combinatorial optimization problem

which (as shown in Section 7) is NP-hard. Often, the schema of

a database changes only infrequently. Hence, a concise schema

description, generated once, can be reused often. This makes it

worthwhile to apply even expensive optimization methods to find

solutions with formal optimality or near-optimality guarantees.

Motivated by this insight, Schemonic models schema compression

as an integer linear programming (ILP) problem and applies sophis-

ticated ILP solvers to find solutions.

Given a new schema to compress, Schemonic first analyzes the

schema to identify candidate substrings for abbreviations. Next,

1
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CREATE TABLE Students(
UniStu_ID int primary key,
UniStu_Name varchar(120) NOT NULL,
UniStu_Street_Name varchar(255) NOT NULL,
UniStu_Street_Nr int NOT NULL,
UniStu_City varchar(255) NOT NULL

);

(a) SQL commands creating schema: requires 93 tokens with GPT.

Table Students(
UniStu_ID(int primary key)
NOT NULL(varchar(255)(

UniStu_Name UniStu_Street_name UniStu_City)
int(UniStu_Street_Nr)

))

(b) First associated schema text: requires 54 tokens with GPT (after
removing tabs and newlines added for readability).

* means UniStu_
Table Students(

*ID(int primary key)
NOT NULL(varchar(255)(

*Name *Street_name *City)
int(*Street_Nr))

)

(c) Second associated schema text: requires 39 tokens with GPT (after
removing tabs and newlines added for readability).

Figure 1: Example schema and associated representations.

it identifies groups of columns with similar properties, enabling

a reduction in search space size for the following optimization

steps. Then, Schemonic calculates heuristic solutions and associates

search space parts with heuristic priorities. Finally, Schemonic

transforms the schema compression problem into an instance of

ILP which is solved by a corresponding solver. Heuristic solutions,

priority values, and column groups are used to provide the ILP

solver with hints. These steps speed up optimization (as shown in

the experiments) without compromising optimality guarantees. The

ILP solution is then transformed into a concise text description of

the input schema. As compression is based on a structured schema

representation with sound transformations, the resulting schema

description is guaranteed to be equivalent to the input schema.

The experiments compare Schemonic to several baselines on

database schemata from the PublicBI [14], TPC-H, and SPIDER [38]

benchmarks. On average, Schemonic reduces fees for reading schema

descriptions via language models by factor two. At the same time,

compression does not negatively impact the ability of language

models like GPT to translate questions to SQL queries.

This paper’s original scientific contributions are the following:

• The paper introduces the problem of schema compression

for LLM prompting.

• It proposes an approach for schema compression based on

integer linear programming.

• It formally analyzes the schema compression problem and

the proposed solution.

• It reports experimental results comparing the proposed

approach to baselines.

The remainder of this paper is organized as follows. Section 2

introduces the problem model and associated terminology. Sec-

tion 3 gives a high-level overview of the Schemonic system and

the context in which it is used. Section 4 describes how Schemonic

identifies potentially useful abbreviations. Section 5 describes the

transformation from schema compression to ILP and Section 6

describes several optimizations, enabling Schemonic to find ILP

solutions faster. Section 7 formally proves the correctness of the

ILP transformation and analyzes the complexity of the problem.

Section 8 discusses experimental results and Section 9 prior work.

2 FORMAL MODEL
We introduce schema compression and related terminology.

Definition 2.1 (Schema). A schema 𝑠 is associated with a set of ta-

bles, denoted as 𝑠 .𝑡𝑎𝑏𝑙𝑒𝑠 . Each table 𝑡 is associated with a name and

a set of columns, referred to as 𝑡 .𝑛𝑎𝑚𝑒 and 𝑡 .𝑐𝑜𝑙𝑢𝑚𝑛𝑠 respectively.

Each column 𝑐 is associated with a name (denoted as 𝑐.𝑛𝑎𝑚𝑒) and a

set of annotations (𝑐.𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠), describing the column type or

applicable constraints (e.g., column type, uniqueness or not-null

constraints, or single-column primary key constraints). Optionally,

a table 𝑡 may be associated with constraints (𝑡 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) that

refer to column groups (e.g., multi-column primary key constraints

or multi-column foreign key constraints).

Definition 2.2 (Identifier, Token). Given a schema 𝑠 , we denote

identifier tokens (short: identifiers) of 𝑠 as 𝐼𝐷 (𝑠). Eligible identifiers
are the set of table names, prefixed by the keyword “table ”, the

set of column names for each table (the name alone in case of non-

ambiguous column names, otherwise the column names prefixed

by the associated table name), and the set of annotations used for

columns or tables. General tokens include the identifier tokens as

well as opening and closing brackets.

Tokens according to the prior definition may or may not corre-

spond to tokens used by specific language models.

Example 2.3. Denote by 𝑠 the schema created in Figure 1a. El-

ements in the set 𝐼𝐷 (𝑠) include Table Students, as well as all
column names such as UniStu_ID and UniStu_Name. Also, it in-
cludes int, primary key, NOT NULL, varchar(255), and all other

column annotations used.

Definition 2.4 (Description Syntax). The empty string (“”) is a

syntactically valid description. If 𝑑1 and 𝑑2 are valid descriptions

then 𝑑1𝑑2 (i.e., their concatenation) is a valid description. Let 𝑡 be

an identifier token for the relevant schema and 𝑑 a valid description.

Then, 𝑡 (𝑑) is also a valid description.

We expand the scope of the 𝐼𝐷 function and also denote by 𝐼𝐷 (𝑑)
the identifier tokens that appear in a schema description 𝑑 .

Definition 2.5 (Description Semantics). Function 𝐹𝑎𝑐𝑡𝑠 (𝑑) denotes
a set of facts about a schema that can be inferred from a schema

description 𝑑 . If description 𝑑 is an empty string, it is 𝐹𝑎𝑐𝑡𝑠 (𝑑) =
∅. If 𝑑 = 𝑑1𝑑2 (i.e., the description concatenates descriptions 𝑑1
and 𝑑2), it is 𝐹𝑎𝑐𝑡𝑠 (𝑑) = 𝐹𝑎𝑐𝑡𝑠 (𝑑1) ∪ 𝐹𝑎𝑐𝑡𝑠 (𝑑2). If 𝑑 = 𝑡 (𝑑′) then
𝐹𝑎𝑐𝑡𝑠 (𝑑) = 𝐹𝑎𝑐𝑡𝑠 (𝑑′) ∪ {{𝑡, 𝑖𝑑}|𝑖𝑑 ∈ 𝐼𝐷 (𝑑′)}.
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Definition 2.6 (Accurate Description). A description 𝑑 of a schema

𝑠 is accurate iff 𝐹𝑎𝑐𝑡𝑠 (𝑑) contains all associations between tables

and columns that appear in the schema and connects all tables and

columns to all applicable annotations (e.g., type and key constraints).

At the same time, the description cannot convey incorrect facts

(e.g., incorrect associations between columns and annotations).

Example 2.7. Let 𝑑 be the schema description illustrated in Fig-

ure 1a. Here, all column names appear within the surrounding con-

text Table Students. This means facts connecting the table with

its columns, e.g., {Table Students,UniStu_ID}, are contained in

𝐹𝑎𝑐𝑡𝑠 (𝑑). For column UniStu_ID, all relevant annotations appear
in the column context, leading to facts {UniStu_ID,Primary Key}
and {UniStu_ID,int}. As yet another example, consider the col-

umn UniStu_Name. As this column appears within two annotation

contexts (NOT NULL and varchar(255)), {UniStu_Name,NOT NULL}
and {UniSti_Name,varchar(255)} appear in 𝐹𝑎𝑐𝑡𝑠 (𝑑). At the same

time, note that the description does not introduce any incorrect

facts (e.g., erroneous column-table associations or incorrect column

annotations). Hence, the schema description is accurate.

Definition 2.8 (Token Mapping). A representation function maps

tokens to a text representation, possibly shortening the token name.

Consider a set 𝐺 of such functions. A token mapping for schema

𝑠 is a function 𝜇 : 𝐼𝐷 (𝑠) ↦→ 𝐺 that maps each token to a function

used to represent it.

Example 2.9. Figure 1c uses a representation function, 𝑔∗ in the

following, that replaces all occurrences of UniStu_ by the symbol

* (which does not otherwise appear in the schema). The identity

function, 𝑔𝐼 in the following, is a special case and represents each

token by its name. Given the text in Figure 1c, we can infer that

𝜇 (UniStu_Name) = 𝑔∗ while 𝜇 (int) = 𝑔𝐼 for the token mapping 𝜇.

Definition 2.10 (Schema Text). We canmap a schema description𝑑

with associated token mapping 𝜇 to a text description,𝑇𝑒𝑥𝑡 (𝑑, 𝜇) as
follows. Let𝐺 = ∪𝑖𝑑∈𝐼𝐷 (𝑑 ) 𝜇 (𝑖𝑑) the set of representation functions

used in 𝜇. It is 𝑇𝑒𝑥𝑡 (𝑑, 𝜇) = 𝐹𝑇𝑒𝑥𝑡 (𝐺)𝑆𝑇𝑒𝑥𝑡 (𝑑, 𝜇) where 𝐹𝑇𝑒𝑥𝑡 de-
scribes all functions in 𝐺 as text and 𝑆𝑇𝑒𝑥𝑡 describes the schema,

using the aforementioned functions. It is 𝑆𝑇𝑒𝑥𝑡 (𝑑, 𝜇) = ”” if 𝑑 is

empty, 𝑆𝑇𝑒𝑥𝑡 (𝑡, 𝜇) = 𝜇 (𝑡) (𝑡) for any identifier token 𝑡 (this ex-

pression first maps 𝑡 to a representation function and then applies

that function to 𝑡 ), 𝑆𝑇𝑒𝑥𝑡 (𝑑′𝑑′′, 𝜇) = 𝑆𝑇𝑒𝑥𝑡 (𝑑′, 𝜇)𝑆𝑇𝑒𝑥𝑡 (𝑑′′, 𝜇), and
𝑆𝑇𝑒𝑥𝑡 (𝑑 (𝑑′), 𝜇) = 𝑆𝑇𝑒𝑥𝑡 (𝑑, 𝜇)”(”𝑆𝑇𝑒𝑥𝑡 (𝑑′, 𝜇)”)”.

Example 2.11. Figure 1c introduces function 𝑔∗ (replacing oc-

currences of UniStu_ by an asterisk symbol) before describing

the schema itself. Note that the identity function does not require

further explanations (i.e., the definition text is empty).

Definition 2.12 (Size). The aforementioned tokens are in general

not equivalent to the tokens used by large language models. Assum-

ing a fixed target model, we use 𝑆𝑖𝑧𝑒 (𝑡𝑒𝑥𝑡) to denote the number

of tokens used by the model to represent the given 𝑡𝑒𝑥𝑡 .

We are now ready to introduce the problem solved by Schemonic.

Definition 2.13 (Schema Compression). Given a schema 𝑠 and a

set G of eligible representation functions, find an accurate schema

description 𝑑 and associated token mapping 𝜇, mapping tokens to

some subset of G, such that 𝑇𝑒𝑥𝑡 (𝑑, 𝜇) has minimal size (i.e., find

argmin𝑑,𝜇 𝑆𝑖𝑧𝑒 (𝑇𝑒𝑥𝑡 (𝑑, 𝜇))).

Schemonic

Pre-Processing

Transform to ILP

Solve ILP

Transform to Schema
Before Run Time

At Run Time
Generate Prompt

LLM

DB Schema, LLM

Task

Answer

Figure 2: Schema compression and its context.

3 SYSTEM OVERVIEW
Section 3.1 gives a high-level overview of the schema compression

approach and the context in which it is used. Section 3.2 describes

the top-level algorithm in more detail.

3.1 System Context
Figure 2 shows an overview of the “Schemonic” system and its

context. The input is a database schema to compress, as well as a

target LLM. Schemonic aims at finding a text representation of the

schema that minimizes the number of tokens used, according to the

tokenizer used by the target LLM. Internally, Schemonic performs

several pre-processing steps, then transforms the schema compres-

sion problem into an ILP instance. It solves the resulting ILP via a

corresponding solver (currently, it uses the Gurobi solver). In doing

so, it considers user-specified bounds on optimization overheads

(e.g., a time limit). The resulting solution is transformed into a

schema representation in text form. This description is concise and

typically uses fewer tokens than the original.

The resulting schema description is meant to be used as part of

the input prompt for an LLM, informing the LLM about the database

structure without using more tokens than necessary. Reducing the

number of tokens is typically equivalent to reducing monetary

processing fees. Providers of LLMs such as OpenAI calculate their

fees as a function of the number of tokens read and generated. The

schema description can be used for any task to be solved by the LLM

that relates to the input database. Examples include text-to-SQL

translation [23, 38, 40], schema matching [4] and data wrangling

tasks [26], or structured information extraction [7].

Generating optimized schema descriptions can be expensive

(depending on the size of the database schema and the constraints

on optimization overheads). However, assuming that the database

schema changes only rarely, the same compressed descriptions can

be reused many times. The latest generation of language models

is typically used in zero or few-shot scenarios. This means that

all relevant information, including the schema description, have
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Algorithm 1 Function generating concise schema descriptions.

1: Input: A schema 𝑠 to compress, a target model 𝐿𝐿𝑀 , the num-

ber 𝑘 of prefixes to consider, and the maximal nesting depth 𝐿.

2: Output: Compressed representation.

3: function CompressSchema(𝑠, 𝐿𝐿𝑀, 𝑘, 𝐿)

4: // Generate candidate prefixes

5: 𝑃 ←CandidatePrefixes(𝑠, 𝑘)

6: // Merge columns with same annotations

7: 𝑠 ←MergeColumns(𝑠)

8: // Generate greedy solution as start

9: 𝑔←Greedy(𝑠)

10: // Transform to integer linear program

11: 𝑖𝑙𝑝 ←TransformToILP(𝑠, 𝐿𝐿𝑀, 𝐿, 𝑃, 𝑔)

12: // Optimize using ILP solver

13: 𝑜 ←ILPsolver(𝑖𝑙𝑝)

14: // Transform solution to description text

15: 𝑡𝑒𝑥𝑡 ←ExtractDescription(𝑜)

16: // Return optimized description

17: return 𝑡𝑒𝑥𝑡

18: end function

to be included into the prompt in each invocation. Hence, using a

compressed schema reduces the per-invocation costs.

3.2 Main Algorithm
Algorithm 1 describes the schema compression process in more

detail. The input is a schema 𝑠 (to be described concisely), a tar-

get model 𝐿𝐿𝑀 , as well as two configuration parameters 𝑘 and 𝐿.

Those parameters restrict the maximal number of prefixes consid-

ered during optimization (𝑘) as well as the maximal nesting depth

for the generated schema descriptions (𝐿). For schema compres-

sion, Schemonic considers opportunities to abbreviate common

prefixes (e.g., of column or table names) by newly introduced sym-

bols (which do not appear in the schema otherwise). Algorithm 1

generates a set of potentially useful prefixes in Line 5. To reduce

the size of the search space for compression, the algorithm merges

together columns with equivalent annotations into column groups

(Line 7). Finally, it generates a first schema description using a

simple greedy algorithm (Line 9), described in Section 6.2. While

this solution is not guaranteed to be optimal (and, as shown in the

experiments, is typically sub-optimal) it provides a useful starting

point for the ILP solver. In Line 11, Algorithm 1 transforms the

schema compression instance into an ILP instance. It solves this

instance by a corresponding ILP solver (Line 13). Depending on user

constraints, this step ends once an optimal solution is found or once

thresholds on optimization overheads (e.g., time limits) are reached.

Finally, Algorithm 1 extracts an optimized schema description from

the ILP solution.

4 RANKING PREFIXES
To reduce the schema description size, Schemonic considers op-

tions to shorten token names by abbreviating common prefixes.

This section describes the method used by Schemonic to identify

potentially useful prefixes. Considering more prefixes increases the

size of the ILP that needs to be solved later on. Hence, Schemonic

Algorithm 2 Generate candidates for shortcuts (prefixes).

1: Input: A database schema 𝑠 .

2: Output: Map prefixes to frequency.

3: function PrefixFreqency(𝑠)

4: // Retrieve list of identifiers

5: 𝐼 ←IdentifierList(𝑠)

6: // Initialize frequency counter

7: 𝐹 ← {𝑖𝑑 : 0|𝑖𝑑 ∈ 𝐼 }
8: // Iterate over identifiers

9: for 𝑖𝑑 ∈ 𝐼 do
10: // Iterate over prefix length

11: for 𝑙 ← 1..|𝑖𝑑 | do
12: // Extract prefix ...

13: 𝑝 ← 𝑖𝑑 [: 𝑙]
14: // ... and count it

15: 𝐹 [𝑝] ← 𝐹 [𝑝] + 1
16: end for
17: end for
18: return F

19: end function

20: Input:Map 𝐹 from prefixes to frequencies.

21: Output: Pruned map from prefixes to counts.

22: function Prune(𝐹 )

23: // Prune out prefixes with a single occurrence

24: 𝐹 ← {⟨𝑝, 𝑓 ⟩|⟨𝑝, 𝑓 ⟩ ∈ 𝐹, 𝑓 > 1}
25: // Iterate over prefixes and frequencies

26: for ⟨𝑝, 𝑓 ⟩ ∈ 𝐹 do
27: // Iterate over substring length

28: for 𝑙 ← 1..|𝑝 | do
29: // Retrieve substring

30: 𝑞 ← 𝑝 [: 𝑙]
31: // Is substring not more common?

32: if ⟨𝑞,𝑔⟩ ∈ 𝐹 |𝑔 ≤ 𝑓 then
33: // Prune dominated substring

34: 𝐹 ← {⟨𝑝, 𝑓 ⟩|⟨𝑝, 𝑓 ⟩ ∈ 𝐹, 𝑞 ≠ 𝑝}
35: end if
36: end for
37: end for
38: // Return pruned prefixes

39: return 𝐹

40: end function

41: Input: A database schema 𝑠 , number of prefixes 𝑘 .

42: Output: A set of common prefixes.

43: function CandidatePrefixes(𝑠, 𝑘)

44: // Count prefix frequency

45: 𝐹 ←PrefixFreqency(𝑠)

46: // Prune prefixes

47: 𝐹 ←Prune(𝐹 )

48: // Return most frequent prefixes

49: return 𝑘 most frequent prefixes in 𝐹

50: end function

aims at identifying a limited number of prefixes with high expected

utility.
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Algorithm 2 shows how Schemonic identifies potentially useful

prefixes. The input to Function CandidatePrefixes is the database

schema 𝑠 , along with the number of prefixes to generate (𝑘). Con-

sidering more prefixes may possibly lead to more optimal solutions

later on. However, considering more prefixes also increases the size

of the associated ILP and therefore optimization time.

Function CandidatePrefixes in Algorithm 2 first counts the

number of occurrences for each prefix. To that purpose, Func-

tion PrefixFreqency first retrieves the list of relevant identifiers.

Function IdentifierList (we omit pseudo-code due to space re-

strictions) retrieves the list of identifier tokens used in the original

(i.e., SQL) description of the database schema. This list contains

duplicates which is important to identify frequent prefixes. Next,

Function PrefixFreqency iterates over all identifier prefixes. To

specify prefixes, the function uses a notation inspired by the Python

programming language, i.e., 𝑖𝑑 [: 𝑙] are the first 𝑙 characters from
the start of string 𝑖𝑑 (or the entire string if it has less than 𝑙 charac-

ters). Each prefix occurrence is counted in a dictionary (𝐹 ), mapping

prefixes to the associated count.

Next, Function CandidatePrefixes prunes prefixes by discard-

ing dominated prefixes. Function Prune first discards prefixes that

do not appear repeatedly. Introducing shortcuts for prefixes as a part

of the schema description also consumes tokens. Hence, doing so

for prefixes that cannot be reused is wasteful. Next, Function Prune

compares prefixes and prunes them out if the following condition

is met. A prefix is dominated if there is another prefix that is longer

and appears at least as often. This avoids situations in which the

system retrieves multiple prefixes of varying length for the same

group of identifiers (here, typically, it is optimal to use the longest

prefix for the associated token group).

The remaining prefixes are ordered by their occurrence fre-

quency. The 𝑘 most frequent prefixes are returned.

5 ILP TRANSFORMATION
Schemonic transforms the problem of schema compression to ILP

problems. The resulting problems can be solved via ILP solvers such

as Cplex or Gurobi. The optimal solution to the ILP instance can be

transformed back into a schema description of minimal size. This

section shows how to transform an instance of schema compression

into an ILP instance. An ILP instance is characterized by a set of

integer variables, a set of linear constraints on those variables, and a

linear objective function of those variables. Section 5.1 describes the

variables used and their semantics, Sections 5.2 describes different

categories of constraints on those variables, and Section 5.3 de-

scribes the objective function. Section 5.4 discusses how to extract

a schema representation from the optimal ILP solution.

5.1 Variables
Table 1 summarizes the variables used by the ILP instances. All

variables are integer variables with binary domain (i.e., the only

admissible values are one and zero). Table 1 summarizes variables

into groups, covering different aspects of the schema description.

Variables 𝑥𝑖𝑡 capture the schema description itself (but not yet the

token mapping). They describe the sequence of tokens selected

for the description, including brackets. Tokens are divided into

consecutive slots. Each slot contains up to one identifier token

Table 1: Variables of integer linear program with associated
semantics (all variables are binary).

Variable Semantics

𝑥𝑖𝑡 1 iff token 𝑡 in slot number 𝑖

𝑟𝑖𝑡𝑔 1 iff function 𝑔 used for token 𝑡 at position 𝑖

ℎ𝑔 1 iff we have function 𝑔 in prompt description

𝑒𝑖 1 iff no tokens are selected at position 𝑖

𝑎𝑖𝑡 1 iff token 𝑡 added to context at position 𝑖

𝑐𝑖𝑙𝑡 1 iff token 𝑡 in context at position 𝑖 and layer 𝑙

𝑚𝑖𝑡1𝑡2 1 iff fact connecting 𝑡1, 𝑡2 mentioned at 𝑖

𝑓𝑡1𝑡2 1 iff fact connecting tokens 𝑡1, 𝑡2 mentioned

(e.g., a column or table name) and up to one (opening or closing)

bracket. As discussed in more detail later, introducing slots (as

opposed to representing single tokens separately) makes it easier

to impose constraints between tokens and brackets (e.g., requiring

that opening brackets are combined with tokens). Each variable 𝑥𝑖𝑡
captures whether or not token 𝑡 is in slot number 𝑖 (𝑥𝑖𝑡 = 1 iff the

token is included).

Tokens can be represented differently, either via the original

token name alone or via a (shortening) transformation. Specifically,

Schemonic considers shortening token names by abbreviating com-

mon prefixes. Variables 𝑟𝑖𝑡𝑔 capture the representation of selected

tokens for slots 𝑖 , tokens 𝑡 , and representation functions𝑔 (i.e., using

the original token name or abbreviating a prefix via a symbol). It is

𝑟𝑖𝑡𝑔 = 1 iff function 𝑔 is used to represent the selected token. All

functions used to represent tokens must be introduced. Variables

ℎ𝑔 indicate whether function 𝑔 is introduced (if so, the schema text

description contains a corresponding text snippet at the beginning).

Variables 𝑒𝑖 , 𝑎𝑖𝑡 , and 𝑐𝑖𝑙𝑡 are auxiliary variables whose values

are directly derived from the values of variables 𝑥𝑖𝑡 . Variables 𝑒𝑖 are

set to one iff slot number 𝑖 is empty. As discussed in more detail in

Section 2, enclosing a group of tokens (e.g., column names) within

brackets, prefixed by another token (e.g., a data type), implicitly

associates all tokens in the group with the preceding token. In

those cases, we also say that the token group appears within the

context of the initial token. If tokens are enclosed by multiple pairs

of brackets, the context may contain more than one token (one

token for each pair of brackets). Variables 𝑐𝑖𝑙𝑡 keep track of the

surrounding context for each slot. It divides context tokens into

layers such that the outermost brackets are associated with the

first layer, the innermost brackets are associated with the last used

layer. The maximal number of usable layers 𝐿 (one of the input

parameters in Algorithm 1) is equivalent to the maximal number

of nested brackets. It is 𝑐𝑖𝑙𝑡 = 1 iff context layer 𝑙 at slot 𝑖 contains

token 𝑡 . Connecting a token with an opening bracket adds that

token to the first unused context layer. Variable 𝑎𝑖𝑡 is set to one iff

token 𝑡 is added to the context in slot 𝑖 (i.e., the token will appear

in the context starting from the next slot).

Variables𝑚𝑖𝑡1𝑡2 and 𝑓𝑡1𝑡2 are used to associate a schema descrip-

tion with semantics. As discussed in Section 2, facts connect token

pairs (e.g., associating a column name with a specific data type).

Variables𝑚𝑖𝑡1𝑡2 indicate whether a fact connecting token 𝑡1 and 𝑡2
was mentioned at slot 𝑖 . More precisely, the mention entails token
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Table 2: Values of decision variables for first six slots of the schema description from Figure 1c.

Slot Tokens Added Layer 1 Layer 2 Representation Facts

1 Table Students( Table Students Table Students
2 UniStu_ID( UniStu_ID Table Students *ID Table Students-UniStu_ID
3 int Table Students UniStu_ID int UniStu_ID-int
4 primary key Table Students UniStu_ID primary key UniStu_ID-primary key
5 ) Table Students
6 NOT NULL( NOT NULL Table Students NOT NULL

𝑡2 appearing in slot 𝑖 whereas token 𝑡1 is contained in one of the

context layers at slot 𝑖 . A fact is stated if it is mentioned at least

once. Variables 𝑓𝑡1𝑡2 indicate whether there is at least one mention

of the fact connecting tokens 𝑡1 and 𝑡2.

Example 5.1. Table 2 illustrates the use of the aforementioned

variables by an example. The example uses the first part of the

schema description from Figure 1c. The first column represents the

slot ID. The second column represents tokens selected in each slot

(i.e., tokens for which variables 𝑥𝑖𝑡 are set to one). The third column

represents tokens added to the context in the corresponding slot (i.e.,

tokens for which variables 𝑎𝑖𝑡 are set to one). The fourth column

represents tokens that appear in the first layer of the context (i.e.,

tokens for which 𝑐𝑖1𝑡 is set to one). The fifth column represents

tokens that appear in the second layer of the context (i.e., tokens for

which 𝑐𝑖2𝑡 = 1). The next column describes the representation used

for each selected identifier (i.e., “non-bracket”) token. There can be

at most one identifier token per slot. The column contains a token

representation iff 𝑟𝑖𝑡𝑔 is set to one for the corresponding function

𝑔). Finally, the last column describes fact mentions associated with

slots. It contains combinations of tokens if the associated variable

𝑚𝑖𝑡1𝑡2 is set to one). For instance, the first slot contains an opening

bracket in combination with token Table Students. This token
therefore appears in the context of each of the following slots (since

the associated closing bracket is not part of the example anymore).

As the context is initially empty, the first context layer contains

the table name. The second slot also contains an opening bracket,

together with the column name UniStu_ID. This token is added to

the second context layer in the following slot (since this layer is

the first unused layer). In the second slot, as the context contains

the table name, column name UniStu_ID is implicitly associated

with that table (as indicated by the corresponding fact).

5.2 Constraints
Linear constraints ensure that each solution represents a valid

schema description (with associated token mapping). The following

constraints connect different variables of the same variable group

(e.g., different variables 𝑥𝑖𝑡 ). Other constraints connect variables

from different groups. Figure 3 illustrates dependencies between

variables of different groups. Circles in Figure 3 represent vari-

able groups and lines represent constraints connecting variables

of different groups. Variable groups 𝑒𝑖 , 𝑎𝑖𝑡 , and 𝑐𝑖𝑙𝑡 are auxiliary

variables, set as a function of variables 𝑥𝑖𝑡 . This is represented

by corresponding connections in Figure 3. At the same time, vari-

ables 𝑎𝑖𝑡 (representing the addition of new tokens to the context)

are connected to variables 𝑐𝑖𝑙𝑡 (representing context). Variables

𝑥 𝑐

𝑎𝑒

𝑚

𝑓

𝑟

ℎ

Figure 3: Constraints between variable groups.

𝑚𝑖𝑡1𝑡2 (representing mentions of facts) depend on tokens selected

in the current slot (variables 𝑥𝑖𝑡 ) and tokens in the current con-

text (variables 𝑐𝑖𝑙𝑡 ). Variables 𝑓𝑡1𝑡2 (representing the statement of a

fact anywhere in the description) aggregate the values of variables

𝑚𝑖𝑡1𝑡2 (representing a fact mention at a specific slot). Finally, values

of variables 𝑟𝑖𝑡𝑔 (capturing the representation of selected tokens)

depend on the variables representing tokens selected in specific

slots (𝑥𝑖𝑡 ). Admissible values for variables ℎ𝑔 (indicating whether

function 𝑔 is used to represent at least one token) depend only

on variables 𝑟𝑖𝑡𝑔 (representing functions used to represent specific

tokens).

Table 3 contains all constraints needed to guarantee admissible

solutions. Constraint groups are named with IDs from C1 to C28.

Implicitly, whenever 𝑖 appears in a sum or universal quantifier, it

runs over all available slot positions. Similarly, 𝑡 , 𝑡1, and 𝑡2 run

over all tokens, except for the notation 𝑡 ∈ 𝐼𝐷 (in which case 𝑡

is restricted to identifier tokens, excluding brackets). The value

domain of 𝑙 are all context layers whereas 𝑔 runs over all represen-

tation functions. Section 7 contains a formal proof, showing that,

together, those constraints imply valid solutions. The remainder of

this subsection describes those constraints and gives an intuitive

explanation for why they are necessary.

Constraint groups C1 to C5 ensure that value assignments for

variables𝑥𝑖𝑡 and 𝑒𝑖 are valid. Specifically, C1 andC5 ensure that each

slot contains at most one identifier token and at most one bracket.

Constraints C2 and C3 imply that variables 𝑒𝑖 (indicating an empty

slot) are assigned consistently with the values of 𝑥𝑖𝑡 . C4 ensures

that empty slots appear only at the end (thereby avoiding redundant

representations of the same schema description). Constraints C6 to

C8 ensure correct bracketing. C6 ensures that opening brackets are

combined with an identifier token in the same slot (such that all

tokens appearing within brackets are implicitly associated with that

6



Table 3: Constraints of integer linear program representing schema compression problem.

ID Constraint Semantics

C1 ∀𝑖 : 𝑥𝑖”(” + 𝑥𝑖”)” + 𝑒𝑖 ≤ 1 Only one bracket or empty slot

C2 ∀𝑖 : 𝑒𝑖 ≥ 1 −∑𝑡 𝑥𝑖𝑡 Slot is empty if no tokens are selected

C3 ∀𝑖, 𝑡 : 𝑒𝑖 ≤ 1 − 𝑥𝑖𝑡 No empty slot if any token is selected

C4 ∀𝑖 : 𝑒𝑖 ≤ 𝑒𝑖+1 All empty slots at the end of prompt

C5 ∀𝑖 : ∑𝑡 ∈𝐼𝐷 : 𝑥𝑖𝑡 ≤ 1 At most one identifier per position

C6 ∀𝑖 : 𝑥𝑖”(” ≤
∑
𝑡 ∈𝐼𝐷 𝑥𝑖𝑡 Must connect opening bracket with identifier

C7 (∑𝑖 𝑥𝑖”(”) − (
∑
𝑖 𝑥𝑖”)”) = 0 Same number of opening and closing brackets

C8 ∀𝑖 : ∑𝑗≤𝑖 (𝑥𝑖”(” − 𝑥𝑖”)”) ≥ 0 Never more closing than opening brackets

C9 ∀𝑖, 𝑡 : 𝑥𝑖𝑡 +
∑
𝑙 𝑐𝑖𝑙𝑡 ≤ 1 Do not select tokens already in context

C10 ∀𝑖, 𝑙 : ∑𝑡 𝑐𝑖𝑙𝑡 ≤ 1 At most one token per context layer

C11 ∀𝑖, 𝑙 : ∑𝑡 𝑐𝑖𝑙𝑡 ≥
∑
𝑡 𝑐 (𝑖+1)𝑙𝑡 Use context layer consecutively

C12

∑
𝑙,𝑡 𝑐0𝑙𝑡 = 0 Initial context is empty

C13 ∀𝑖 : ∑𝑙,𝑡 𝑐𝑖𝑙𝑡 + 𝑥𝑖”(” − 𝑥𝑖”)” =
∑
𝑙,𝑡 𝑐 (𝑖+1)𝑙𝑡 Correct number of tokens in context

C14 ∀𝑖, 𝑡 : 𝑎𝑖𝑡 ≤ 𝑥𝑖”(” No context addition without opening bracket

C15 ∀𝑖, 𝑡 : 𝑎𝑖𝑡 ≤ 𝑥𝑖𝑡 No context addition without selecting token

C16 ∀𝑖, 𝑡 : 𝑎𝑖𝑡 ≥ 𝑥𝑖”(” + 𝑥𝑖𝑡 − 1 Opening bracket and token imply context addition

C17 ∀𝑖, 𝑡 : ∑𝑙 𝑐 (𝑖+1)𝑙𝑡 ≥ 𝑎𝑖𝑡 Have token in context after adding it

C18 ∀𝑖, 𝑙, 𝑡 : 𝑐 (𝑖+1)𝑙𝑡 ≥ 𝑐𝑖𝑙𝑡 − 𝑥𝑖”)” Cannot drop context without closing bracket

C19 ∀𝑖, 𝑙, 𝑡 : 𝑐 (𝑖+1)𝑙𝑡 ≤ 𝑐𝑖𝑙𝑡 + 𝑥𝑖”(” Cannot add context without opening bracket

C20 ∀𝑖, 𝑡1, 𝑡2 :𝑚𝑖𝑡1𝑡2 ≤
∑
𝑙 𝑐𝑖𝑙𝑡1 Fact mention requires first token in context

C21 ∀𝑖, 𝑡1, 𝑡2 :𝑚𝑖𝑡1𝑡2 ≤ 𝑥𝑖𝑡2 Fact mention requires second token selected

C22 ∀𝑖, 𝑡1, 𝑡2 :𝑚𝑖𝑡1𝑡2 ≥ (
∑
𝑙 𝑐𝑖𝑙𝑡1 ) + 𝑥𝑖𝑡2 − 1 Fact mention if first token in context and second selected

C23 ∀𝑡1 < 𝑡2 : 𝑓𝑡1𝑡2 ≤
∑
𝑖 (𝑚𝑖𝑡1𝑡2 +𝑚𝑖𝑡2𝑡1 ) Fact is not stated unless it is mentioned

C24 ∀𝑖, 𝑡1 < 𝑡2 : 𝑓𝑡1𝑡2 ≥ 𝑚𝑖𝑡1𝑡2 +𝑚𝑖𝑡2𝑡1 Fact is stated if it is mentioned at least once

C25 ∀{𝑡1, 𝑡2} ∈ 𝑇𝑟𝑢𝑒 : 𝑓𝑡1𝑡2 = 1 True facts need to be stated

C26 ∀{𝑡1, 𝑡2} ∈ 𝐹𝑎𝑙𝑠𝑒 : 𝑓𝑡1𝑡2 = 0 False facts cannot be stated

C27 ∀𝑖, 𝑡 ∈ 𝐼𝐷 : 𝑥𝑖𝑡 =
∑
𝑔 𝑟𝑖𝑡𝑔 Choose one representation for each selected token

C28 ∀𝑖, 𝑡, 𝑔 : 𝑟𝑖𝑡𝑔 ≤ ℎ𝑔 Must add explanation of function in prompt to use it

token). C7 ensures that the number of opening and closing brackets

is equal whereas C8 ensures admissible ordering of those brackets

(ensuring that the number of closing brackets never exceeds the

number of opening brackets encountered previously).

Constraints C9 to C19 ensure that variables 𝑐𝑖𝑙𝑡 accurately rep-

resent context assigned by the sequence of opening (and closing)

brackets and associated tokens, represented by variables 𝑥𝑖𝑡 . Con-

straint C9 ensures that tokens already in the context cannot be

selected in the associated slot. Constraint C10 ensures that each

context layer only represents a single selected token. Furthermore,

constraint C11 ensures that context layers are used consecutively.

Constraints C12 and C13 ensure that the total number of selected

tokens in the context is accurate. C12 ensures no selected tokens in

the first context whereas C13 bounds the change, compared to the

context of the prior slot, as a function of the number of opening

and closing brackets in the previous slot. Constraints C14 to C16

ensure that variables 𝑎𝑖𝑡 (representing the addition of token 𝑡 to

the context after slot 𝑖) are set consistently with variables 𝑥𝑖𝑡 . C17

ensures that tokens added in slot 𝑖 appear in context of the follow-

ing slot. Constraints C18 and C19 ensure no changes to the context

in the absence of opening and closing brackets.

Constraints C20 to C26 refer to the semantics of the selected

schema description, ensuring that all relevant facts are mentioned

(and no incorrect statements are included). Constraints C20 to C22

ensure that variables 𝑚𝑖𝑡1𝑡2 (indicating that tokens 𝑡1 and 𝑡2 are

connected in slot 𝑖) are set consistently with variables 𝑥𝑖𝑡 and 𝑐𝑖𝑙𝑡 .

C23 and C24 ensure that variables 𝑓𝑡1𝑡2 (indicating whether the

connection between tokens 𝑡1 and 𝑡2 is mentioned at least once) are

set consistently with variables𝑚𝑖𝑡1𝑡2 . C25 and C26 make sure that

all true facts are mentioned whereas no incorrect statements are

made. The set 𝑇𝑟𝑢𝑒 refers to all token pairs that are connected by

the database schema, namely associations between tables and their

columns and between columns and their associations. On the other

hand, 𝐹𝑎𝑙𝑠𝑒 contains all token pairs that should not be connected in

the schema description, namely connections between columns and

tables in which they do not appear as well as connections between

columns and types or constraints that do not apply.

Constraints C27 and C28 focus on the representation of tokens.

Specifically, C27 ensures that each selected token is mapped to

exactly one representation. This representation is either the identity

function (i.e., the token is represented by its name) or a function

that abbreviates a common prefix by a shorter symbol. In principle,
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Table 4: Terms that appear in the objective function.

Term Semantics∑
𝑖,𝑡,𝑔 (𝑟𝑖𝑡𝑔 · 𝑆𝑖𝑧𝑒 (𝑔(𝑡)) Sum over selected token repre-

sentations, weighted by length∑
𝑔 (ℎ𝑝 · 𝑆𝑖𝑧𝑒 (𝐹𝑇𝑒𝑥𝑡 (𝑔))) Sum over selected functions,

weighted by description length

the constraints are slightly more permissive, compared to token

mappings introduced in Section 2. They allow different occurrences

of the same token to map to different representations. However,

due to the objective function discussed next, an optimal solution

assigns all occurrences to the shortest representation (and uses a

single representation if several of them have the same length since

introducing more functions increases the text length). Constraint

C28 makes sure that all representation functions used at least once

are also introduced (represented by variable ℎ𝑔).

5.3 Objective Function
The goal of optimization is to minimize the length of the schema

description, measuring length as the number of tokens required

on the target LLM. This is equivalent to minimizing monetary

processing fees if using LLMs hosted by providers such as OpenAI.

Table 4 summarizes the terms that appear in the objective function

to minimize. The schema description contains two types of text:

text describing representation functions and text describing the

schema itself (and possibly referring to the previously introduced

representation functions). Hence, the objective function sums over

all selected tokens and used functions, weighted by the length of

the associated text description. Note that, in principle, the number

of tokens used by the LLM may be slightly lower than the objective

function above. This could happen if the LLM introduces single

tokens representing multiple tokens used in the schema description.

This could be taken into account by a more complex objective,

detecting consecutive tokens that are merged by the LLM and

reducing the text size accordingly. However, in practice, having

single LLM tokens to represent, e.g., combinations of column names

is unlikely. The experiments show that the objective above leads to

significant cost improvements.

5.4 Extracting Solution
Extracting the schema description from the ILP solution is straight-

forward. We start by iterating over representation functions and

add descriptions at the start of the prompt. Currently, Schemonic

supports functions that abbreviate common prefixes. Their descrip-

tion is of the form “[Symbol] means [Prefix]” where [Symbol] is a

symbol that can be represented by a single LLM token (and is not

otherwise used as part of schema identifiers). [Prefix] represents a

prefix that appears frequently in the schema.

Next, we iterate over slots (in ascending order of slot ID), and add

for each selected token the selected representation. If slots contain

an identifier token and an opening bracket (this is the only permis-

sible case in which a slot contains more than one token), we add the

identifier token first and then the opening bracket. Furthermore,

we add a whitespace after each slot (except for empty slots and

Algorithm 3 Merge columns with the same annotations.

1: Input: Original schema 𝑠 .

2: Output: Schema with merged columns.

3: functionMergeColumns(𝑠)

4: // Iterate over schema tables

5: for 𝑡 ∈ 𝑠 .𝑡𝑎𝑏𝑙𝑒𝑠 do
6: // Retrieve all columns

7: 𝐶 ← 𝑡 .𝑐𝑜𝑙𝑢𝑚𝑛𝑠

8: // Get all annotation sets

9: 𝐴← {𝑐.𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 |𝑐 ∈ 𝐶}
10: // Associate annotations with column groups

11: 𝐺 ← {⟨𝐶𝑎, 𝑎⟩|𝑎 ∈ 𝐴,∀𝑔 ∈ 𝐶𝑎 ⊆ 𝐶 : 𝑔.𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑎}
12: // Create merged columns

13: 𝑀 ← ∅
14: for ⟨𝐶𝑎, 𝑎⟩ ∈ 𝐺 do
15: // Create group name

16: if |𝐶𝑎 | > 1 then
17: 𝑛 ← ”[” +𝐶𝑎 [0] .𝑛𝑎𝑚𝑒 + ”, ” + ... + ”]”
18: else
19: 𝑛 ← 𝐶𝑎 [0] .𝑛𝑎𝑚𝑒

20: end if
21: // Add to merged columns

22: 𝑀 ← 𝑀 ∪ {𝑛}
23: end for
24: // Replace original columns

25: 𝑡 .𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ← 𝑀

26: end for
27: return 𝑠

28: end function

the last used slot). Finally, we add table-level annotations from the

input schema (currently, Schemonic only considers annotations on

single columns for optimization). The result is a text containing a

full schema description.

6 OPTIMIZATIONS
This section introduces several optimizations, enabling Schemonic

to find optimal solutions faster.

6.1 Merging Columns
To reduce the size of the search space, Schemonic merges columns

that have the same annotations and are associated with the same

table. Intuitively, whenever one of those columns appears in a given

context, replacing that column with the entire group does not add

any incorrect facts. Also, adding the other columns conveys correct

facts about these columns without requiring additional context.

Algorithm 3 shows how Schemonic merges columns into column

groups. Given a schema 𝑠 as input, the algorithm iterates over all

schema tables. For each table, it collects the set of annotation sets,

considering all table columns. It groups columns by their annota-

tions (Line 11) and creates a set of merged columns (Variable 𝑀).

Column groups may be singletons, in which case the column re-

mains unchanged. If a group contains multiple columns, its name is

derived from the column names in the group, surrounded by square

brackets. The list of merged columns is assigned to the table.
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6.2 Greedy Algorithm
ILP solvers such as Gurobi allow users to provide initial solutions

as a starting point. This can speed up optimization significantly.

Schemonic uses a simple greedy algorithm to generate solutions

as a starting point. It iterates over all tables and, for each table,

merges columns with equal annotations into column groups, as

described in the previous subsection. It generates a description ac-

cording to the following grammar (represented in Extended Backus-

Naur Form with * representing an unlimited number of repetitions

of the previous symbol):

<SchemaDef>→ <TableDef>*
<TableDef>→ Table <TableName>(<ColumnDef>*)
<ColumnDef>→ <ColumnGroup>(<Annotation>*)
This solution associates each table with its column groups and

each column group with the corresponding annotations. The greedy

solution is used to set start values for variables associated with

tokens (𝑥𝑖𝑡 and 𝑐𝑖𝑙𝑡 ). No start values are set for representation

variables (𝑟𝑖𝑡𝑔).

Example 6.1. For the schema from Figure 1a, the greedy algo-

rithmmerges the UniStu_Street_Name and UniStu_City columns

as they have the same annotations. It generates the following de-

scription (tabs added for readability):

Table Students(
[UniStu_Street_Name UniStu_City](

varchar(255) NOT NULL)
UniStu_ID(int primary key)
UniStu_Name(varchar(120) NOT NULL)
UniStu_Street_Nr(int NOT NULL))

6.3 Value Hints
Finally, ILP solvers often enable users to specify hints on likely

variable values. Such values are prioritized during search (while

alternative values are eventually explored as well).

Intuitively, tokens that appear more frequently in the original

schema description tend to be more useful for creating context. E.g.,

creating context for common column annotations (within which

all relevant columns can be enumerated) is preferable over creating

context for each single column (in which its annotations can be

included). Hence, Schemonic sorts tokens by their occurrence fre-

quency. It provides the ILP solver with hints related to infrequent

tokens (i.e., tokens that are not within the top ten in terms of oc-

currence frequency). For those tokens, all related context variables

are assigned to zero as default value.

7 FORMAL ANALYSIS
Section 7.1 proves that the transformation from schema compres-

sion to ILP, described in Section 5, is correct. Section 7.2 analyzes

the complexity of the problem and approach.

7.1 Correctness
The following theorems prove correctness of different aspects of

the ILP transformation (using constraints from Table 3).

Theorem 7.1. An integer linear program solution represents a
valid (i.e., syntactically correct) schema description.

Proof. The proof uses induction over the number of slots. Triv-

ially, if no slots are used then the description is empty and therefore

valid. Now, assume that any solution using up to 𝑁 slots is valid.

This implies that solutions with 𝑁 + 1 slots are valid as well, as

demonstrated next. We distinguish different cases, based on the

value assignment in the first slot. If 𝑒1 = 1 then no tokens are se-

lected in the first slot (C2, C3) and all the following slots are empty

as well (C4). Hence, the description is empty and therefore valid.

Next, assume 𝑒1 = 0 and 𝑥1𝑡 = 1 for some identifier token 𝑡 while

𝑥
1”(” = 𝑥

1”)” = 0 (i.e., we have no brackets in the first slot). Due to

C5, no more than one identifier token can be selected in the first

slot. We can therefore decompose the associated description 𝑑 into

𝑑 = 𝑡𝑑′ where 𝑑′ uses 𝑁 slots. Due to the inductional assumption,

𝑑′ and therefore 𝑡𝑑′ is valid. Now, assume the first slot contains

a bracket. Due to C1, it can only contain a single bracket. Due to

C8, the first bracket must be an opening bracket (i.e., 𝑥
1”(” = 1).

Due to C6, the first slot must select an identifier token 𝑡 as well

(i.e., 𝑥1𝑡 = 1). C7 and C8 imply correct bracketing within the de-

scription. Hence, we can find a closing bracket associated with the

opening bracket of the first slot. This means we can decompose the

description 𝑑 into 𝑡 (𝑑′)𝑑′′ where 𝑑′ and 𝑑′′ use less than 𝑁 slots.

Also, since we selected matching brackets and since the bracketing

of 𝑑 is correct, the bracketing in 𝑑′ and 𝑑′′ is correct, too. □

Theorem 7.2. Each selected token is mapped to one representation
and each representation function is introduced.

Proof. Due to C27, exactly one representation is used for each

selected identifier token. Due to C28, all relevant functions for the

selected representations must be introduced. □

Theorem 7.3. An integer linear program solution assigns context
consistently with selected tokens.

Proof. The proof uses induction over the slot count. For the

first slot, the context is empty (C12). This is trivially consistent since

there are no preceding slots with opening brackets. Now, assume

context variables are consistent until slot number 𝑖 . We prove that

they are consistent for slot 𝑖 + 1 as well. We distinguish different

cases, based on the content of slot 𝑖 . If 𝑖 contains a single token

without brackets, the context does not change between slots 𝑖 and

𝑖 + 1. Since 𝑥𝑖”(” = 𝑥𝑖”)” = 0, all context variables remain unchanged

due to C18 and C19 (which is consistent). Now, assume that slot

𝑖 contains a closing bracket (i.e., 𝑥𝑖”)” = 1). Furthermore, assume

that the context at slot 𝑖 uses 𝑙 layers (i.e., the first 𝑙 layers contain a

token). Due to C19, no tokens are added in the context (comparing

the context for slot 𝑖 to the one for slot 𝑖 + 1). Due to C13, only

one single token is deleted in the context. Due to C11, this token

must be deleted in the last used layer 𝑙 (which is consistent). Finally,

assume that slot 𝑖 contains an opening bracket, together with one

token 𝑡 (this is the only remaining possibility due to C1, C5, C6).

Assume that 𝑙 context layers are used at slot 𝑖 . Due to C13, only

one single token is added in context 𝑖 + 1 (compared to context 𝑖).

None of the currently selected tokens in the first 𝑙 layers can be

removed due to C18. Also, due to C10, no token can be added in

any of the 𝑙 used layers. Due to C11, a token can only be added in

layer 𝑙 + 1. Variable 𝑎𝑖𝑡 , indicating the addition of token 𝑡 to the

context at position 𝑖 , must be set to one (due to C14, C15, and C16).
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Due to C17, this implies that at least one context layer at position

𝑖 + 1 must contain this token. Due to C9, this token was not selected

in any layer up to layer 𝑙 . Instead, the only remaining possibility is

that the token is added in layer 𝑙 + 1. □

Theorem 7.4. An integer linear program solution describes the
target schema accurately.

Proof. A fact connects two identifier tokens 𝑡1 and 𝑡2. A fact

is mentioned if the description contains a sub-expression of the

form 𝑡1 (. . . 𝑡2 . . .) or 𝑡2 (. . . 𝑡1 . . .). Solutions represent syntactically
valid schema descriptions (Theorem 7.1) and context is assigned

consistently (Theorem 7.3). Hence, there must be a slot 𝑖 such that

𝑥𝑖𝑡1 = 1 and ∃𝑙 : 𝑐𝑖𝑙𝑡2 = 1 or, vice versa, a slot with 𝑥𝑖𝑡2 = 1 and

∃𝑙 : 𝑐𝑖𝑙𝑡1 = 1. In that case,𝑚𝑡1𝑡2 = 1 or𝑚𝑡2𝑡1 = 1 due to C20, C21,

and C22. Due to C23 and C24, having at least one mention of a fact

is equivalent to 𝑓𝑡1𝑡2 = 1 (for 𝑡1 < 𝑡2). Also, due to C25, all true facts

are stated while, due to C26, no incorrect facts are stated. □

In summary, the prior theorems show that each ILP solution rep-

resents a syntactically and semantically correct schema description.

7.2 Complexity
We analyze complexity of the schema compression problem.

Theorem 7.5. Schema compression is NP-hard.

Proof. The proof uses a polynomial-time reduction from unca-

pacitated facility location (UFL) [16]. An instance of UFL is defined

by cost values 𝑓𝑖 for opening a facility at location 𝑖 , as well as cost

factors 𝑐𝑖 𝑗 such that the cost of servicing location 𝑗 from facil-

ity location 𝑖 is 𝑐𝑖 𝑗 . The goal is to minimize the sum of both cost

terms. We transform such an instance to an instance of schema

compression as follows. First, introduce a single table with one

unannotated column for each client location 𝑗 . Using an expression

of the form 𝑇𝑎𝑏𝑙𝑒𝑁𝑎𝑚𝑒 (𝐶𝑜𝑙𝑢𝑚𝑛1,𝐶𝑜𝑙𝑢𝑚𝑛2, . . .) expresses all rele-
vant facts (i.e., the association between the table and its columns)

as concisely as possible. However, there are choices regarding the

column representation. Introduce one representation function 𝑔𝑖
for each eligible facility location 𝑖 such that 𝑠𝑖𝑧𝑒 (𝑇𝑒𝑥𝑡 (𝑔𝑖 )) = 𝑓𝑖 .

Also, choose representation functions and column names such that

𝑆𝑖𝑧𝑒 (𝑔𝑖 (𝐶𝑜𝑙𝑢𝑚𝑛𝑖 )) = 𝑐𝑖 𝑗 . The solution to the schema compression

problem introduces a subset of representation functions. Those

functions correspond to the optimal facilities to open. □

The following theorems analyze the size of the ILP as a func-

tion of the dimensions of the schema compression problem. Often,

the ILP size correlates with the time it takes to find optimal solu-

tions. We denote by 𝑛𝑡 the number of tokens, by 𝑛𝑖 the number of

slots, by 𝑛𝑙 the number of context layers, and by 𝑛𝑔 the number of

representation functions considered.

Theorem 7.6. The number of integer linear program variables is
in 𝑂 (𝑛𝑖 · 𝑛𝑡 · (𝑛𝑔 + 𝑛𝑙 + 𝑛𝑡 )).

Proof. Variable group 𝑟𝑖𝑡𝑔 has a number of variables in 𝑂 (𝑛𝑖 ·
𝑛𝑡 · 𝑛𝑔), dominating the number of decision variables (𝑥𝑖𝑡 ), func-

tion selection variables (ℎ𝑔), empty-slot variables (𝑒𝑖 ), and context

addition variables (𝑎𝑖𝑡 ). The number of context variables 𝑐𝑖𝑙𝑡 is

in 𝑂 (𝑛𝑖 · 𝑛𝑙 · 𝑛𝑡 ) while the number of variables representing fact

mentions (𝑚𝑖𝑡1𝑡2 ) is in 𝑂 (𝑛𝑖 · 𝑛2𝑡 ) (thereby dominating the group of

variables 𝑓𝑡1𝑡2 representing fact statements). □

Theorem 7.7. The number of integer linear program constraints
is in 𝑂 (𝑛𝑖 · 𝑛𝑡 · (𝑛𝑙 + 𝑛𝑡 + 𝑛𝑔)).

Theorem 7.8. Comparing constraint groups C1 to C19, groups C18
and C19 integrate a dominant number of constraints (𝑂 (𝑛𝑖 · 𝑛𝑙 · 𝑛𝑡 )).
Comparing groups C20 to C26, groups C20 to C22 have a dominant
number of constraints (𝑂 (𝑛𝑖 ·𝑛2𝑡 )). Comparing C27 to C28, group C28
has a dominant number of constraints (𝑂 (𝑛𝑖 · 𝑛𝑡 · 𝑛𝑔)).

8 EXPERIMENTAL RESULTS
Section 8.1 describes the experimental setup. Section 8.2 compares

Schemonic to different compression baselines. Section 8.3 validates

that LLMs are able to understand compressed schema represen-

tations. Finally, Section 8.4 analyzes the impact of various tuning

parameters on optimization performance.

8.1 Experimental Setup
Schemonic, as well as the baselines, are implemented in Python 3.10.

Schemonic uses Gurobi 10 as ILP solver. All of the following exper-

iments are executed on an EC2 c5.4xlarge instance with 32 GB of

main memory and 16 virtual CPUs, running Ubuntu 22.04. We com-

pare Schemonic to several baseline methods for database schema

representation. First, we compare against the associated SQL DDL

commands, as formatted by the “sqlglot” Python library. This base-

line is referred to as “SQL” in the following plots. Second, we com-

pare against the schema representation used in a prompt template

for text-to-SQL translation, available for sale on a popular prompt

distribution platform
2
. This baseline is referred to as “PB”. Third,

we compare to the output of the greedy algorithm discussed in

Section 6.2 (“Greedy”).

The experiments use schemata from three different benchmarks.

First, we use schemata of the PublicBI benchmark [14]. This bench-

mark is derived from Tableau workbooks and represents real user

data. Second, we evaluate baselines on the schema of the TPC-

H benchmark. Third, we use the schemata of the SPIDER bench-

mark [38], a popular benchmark for text-to-SQL translation featur-

ing 166 databases. In all cases, we measure the number of tokens

according to the GPT tokenizer. Unless noted otherwise, we config-

ure Schemonic to use all optimizations discussed in Section 6, up

to three context layers, nine prefixes, and a timeout of 20 minutes

per instance.

8.2 Comparing Compression Methods
Figure 4 compares different schema compression methods in terms

of their size and compression overheads. The figure contains box-

plots for each benchmark and baseline. The PublicBI and SPIDER

benchmarks contain multiple database schemata and each data

point is associated with one schema. The TPC-H benchmark only

features a single database (containing eight tables). This is why

the boxplots for TPC-H condense into a single line. For PublicBI

and SPIDER, boxes cover the range between the 25th and 75th

percentile, the line inside of each box represents the median, and

diamond symbols mark the arithmetic average. As usual, lower

2
https://promptbase.com/prompt/generate-sql-based-on-your-schema
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Figure 4: Comparing compression ratio, fees per invocation
usingGPT-4, and compression time of Schemonic to baselines
(note the logarithmic y-axis for the lower two rows).

whiskers denote the smallest data values larger than the lower box

bound minus 150% of the box height. Upper whiskers are defined

analogously. Single marks represent outliers outside of that range.

The columns in Figure 4 are associated with the three bench-

marks. The first row reports the size of the schema description,

measured in tokens and scaled to the size of the smallest descrip-

tion for each benchmark. On average, Schemonic reduces the size

of schema descriptions by a factor between 1.7 (TPC-H) and 2

(PublicBI). In some cases, Schemonic achieves a compression fac-

tor of close to three (on the SPIDER benchmark). Compared to

the simpler greedy approach, Schemonic reduces the length of the

schema description by at least 20% on average for each of the three

benchmarks. E.g., for the SPIDER benchmark, Schemonic reduces

description length by over 23% on average and up to 76% for some

schemata. For TPC-H, Schemonic reduces the length of the schema

description by 26%, compared to the greedy approach.

The second row reports the fees for reading the schema descrip-

tion via GPT-4. At the time of writing, reading 1,000 tokens with

GPT-4 (gpt-4-32k) costs 6 cents of processing fees
3
. For instance,

when using GPT-4 for text-to-SQL translation, the cost of reading

the schema description has to be paid for each invocation of the

model, i.e., for each new query. As processing fees are proportional

to the schema size, the tendencies in the second row are similar to

3
https://openai.com/pricing

the ones shown in the first row of plots (note, however, that the

y-axis of the second row is logarithmic whereas the y-axis of the

first row is linear). The costs of reading the database schema once

reach up to 28 cents for a traditional schema representation but are

always below 11 cents for the descriptions generated by Schemonic

(those maxima occur for the “baseball_1” database of the SPIDER

benchmark, featuring 26 tables). Clearly, fees for processing schema

descriptions via GPT can be comparable to or can even dominate

the processing costs of typical SQL queries (e.g., costs for reading

schema descriptions are comparable to the costs of querying hun-

dreds of gigabytes of data on BigQuery
4
). This makes it worthwhile

to optimize this component of total processing fees. While prices

for models such as GPT-4 tend to decrease over time, new models

appear regularly and come with higher costs.

The third row (note the logarithmic y-axis) reports compression

time for the different baselines. All baselines except for Schemonic

achieve compression times of less than 100 milliseconds. Those

baselines exceed compression times of 10 milliseconds only for

benchmarks containing large schemata with a reading cost of 10

cents and more. Schemonic consumes up to five minutes of com-

pression time (i.e., it reaches the timeout). However, ILP solvers

continuously generate solutions. This means that even if Schemonic

reaches the timeout, it produces solutions that come with near-

optimality guarantees (generated by the ILP solver). Investing time

into schema compression pays off in scenarios such as text-to-SQL

translation where schema descriptions are read frequently whereas

schema changes are comparatively rare. In such scenarios, the ad-

ditional time Schemonic spends in compression is quickly offset by

savings when processing schema descriptions via language models.

8.3 Compression versus LLM Accuracy
We analyze whether compression impacts result quality for text-to-

SQL translation [12]. TPC-H and the PublicBI benchmark only fea-

ture SQL queries, no associated natural language questions. Hence,

we cannot evaluate the precision of text-to-SQL translation us-

ing those benchmarks. SPIDER, on the other hand, features SQL

queries with corresponding natural language questions. We use

the first 200 questions from the training set of the original SPIDER

benchmark (“SPIDER” in the following plots), the 508 questions of

SPIDER-Realistic [9] (“SPIDER-Real”), a benchmark variant refer-

ring to the same schemata as SPIDER, as well as the 1034 questions

of SPIDER Synthetic [11] (“SPIDER-Syn”), another variant referring

to the same schemata. We use the following prompt template for

text-to-SQL translation:

Schema:[SD]
Question:[NLQ]
SQL:

[SD] is a placeholder, representing the (original or compressed)

database schema description, while [NLQ] represents the question

to translate into an SQL query. We instantiate the prompt template

by substituting both placeholders and extracting the translated SQL

query from the completion generated by the language model.

Figure 5 shows the number of successfully translated queries (as

prior work on text-to-SQL translation, this number is calculated

automatically by comparing the results of executing generated

4
https://cloud.google.com/bigquery/pricing
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Figure 6: Size of integer linear program as a function of input
problem size.

SQL queries to the ground truth result) for all three benchmark

variants. The figure reports results for GPT-3.5 Turbo as well as for

the (significantly larger) GPT-4 model, using the default variants of

each model as of June 1, 2024. Results are shown for the schema

descriptions generated by all baselines introduced before. In all

scenarios, the success ratio is similar across all baselines. For both

GPT models, Schemonic solves most test cases for one benchmark

whereas the greedy algorithm solves most test cases in another

one of the three benchmarks. Even for the smaller GPT-3.5 Turbo

model, the results are inconsistent with a significant reduction in

result quality due to compressed schema descriptions.

8.4 Further Analysis
Figure 6 illustrates dependencies between schema dimensions and

the size of the associated ILP. Each point corresponds to one test

case, reporting the schema length on the x-axis and the number of

ILP variables or constraints on the y-axis. According to the formal

analysis in Section 7, the number of variables and constraints grows

linearly in the number of slots and quadratically in the number of

distinct tokens. Assuming that column names are the token subset

with dominant size, the number of tokens is highly correlated with

schema length. The results in Figure 6 show superlinear growth

and are therefore consistent with the predictions from Section 7.

Finally, Figure 7 reports on results of an ablation study, succes-

sively removing the optimizations discussed in Section 6. On the

y-axis, the figure measures the percent of test cases for which a
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Figure 7: Impact on optimizations on ratio of test cases solved.

valid solution was found during an optimization time of five min-

utes. From left to right, the figure first removes the insertion of a

greedy solution as start values, the addition of hints on variable

values, and finally column merging. While 100% of test cases are

solved with all optimizations, the number reduces to zero with all

optimizations deactivated.

9 RELATEDWORK
Prior work has shown that changes to the prompt can significantly

influence the performance of language models in certain scenar-

ios [28, 31, 39], motivatingwork aimed atmaximizing output quality

by automatically tuning prompts [8, 30, 34]. On the other hand, a

recent line of work on prompt compression shows that eliminating

redundant information in the prompt has negligible impact on result

quality in many scenarios[1, 6, 15, 20, 21, 25]. Schemonic belongs

into this category. It differs from prior approaches as the method is

specialized to database schema compression, enabling Schemonic to

guarantee that all generated descriptions are semantically correct.

E.g., using small language models for prompt compression [20] is

a more generic approach but lacks formal guarantees that com-

pression preserves all relevant information. Prompt compression

is complementary to other approaches, aimed at reducing cost for

large languagemodels, such as compressingmodels themselves [37]

or batching multiple tasks for the same context [24].

The proposed approach connects to prior work on relational

data compression [3, 13, 17–19, 29] as well as workload compres-

sion [5, 22, 35]. However, it differs by its target (schema com-

pression) and its context (prompt compression to reduce LLM

cost). Broadly, this work connects to prior work using ILP to solve

database optimization problems [2, 10, 27]. However, the prob-

lem solved in this work differs from the problems addressed in

prior work. Finally, Schemonic connects to various applications

in the database area that require describing database schemata to

LLMs. Among others, such applications include text-to-SQL trans-

lation [23, 32, 38, 40], an area where prompting is popular [12], data

wrangling tasks [26, 36], or information extraction into a target

database [7].

10 CONCLUSION
Schemonic optimizes prompts that contain a description of a re-

lational database, minimizing the number of tokens used on an

LLM (and therefore invocation overheads). The experiments show

that this approach reduces costs significantly while compressed

representations can be well understood by LLMs.
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