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Tutorial Outline

1. Transformer Architecture


2. Transfer Learning


3. Libraries and Interfaces


4. Applications in Data Management

https://itrummer.github.io/lm4db/
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The Transformer Model
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Attention Mechanism vs. Key-Value Stores

• Shared vocabulary:


• Keys, values, queries


• Similar semantics:


• Find keys matching query


• Retrieve associated values
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Attention: Simplifying Intuition

I Love Database Research
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Attention: Simplifying Intuition
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Attention vs. Simplifying Intuition

• Real-valued vectors instead of discrete symbols


• Continuous similarity between queries and keys


• Output value is sum of values, weighted by similarity


• Several normalization steps
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Demo: Visualizing Attention
https://colab.research.google.com/drive/1DG2h6uakCsSVmU0Vem0E5qUGWeADTqe5

https://colab.research.google.com/drive/1DG2h6uakCsSVmU0Vem0E5qUGWeADTqe5
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Recurrent Neural Network
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Attention versus Recurrence

Layer Type Complexity  
per Layer

Sequential 
Operations

Maximum  
Path Length

Self-Attention O(n2*d) O(1) O(1)

Recurrent O(n*d2) O(n) O(n)

d: Vector dimension 
n: Sequence length



Slides by Immanuel Trummer, Cornell University

Attention versus Recurrence

Layer Type Complexity  
per Layer

Sequential 
Operations

Maximum  
Path Length

Self-Attention O(n2*d) O(1) O(1)

Recurrent O(n*d2) O(n) O(n)

d: Vector dimension 
n: Sequence length

Faster if d>nSelf-attention is ...



Slides by Immanuel Trummer, Cornell University

Attention versus Recurrence

Layer Type Complexity  
per Layer

Sequential 
Operations

Maximum  
Path Length

Self-Attention O(n2*d) O(1) O(1)

Recurrent O(n*d2) O(n) O(n)

d: Vector dimension 
n: Sequence length

Faster if d>nSelf-attention is ...



Slides by Immanuel Trummer, Cornell University

Attention versus Recurrence

Layer Type Complexity  
per Layer

Sequential 
Operations

Maximum  
Path Length

Self-Attention O(n2*d) O(1) O(1)

Recurrent O(n*d2) O(n) O(n)

d: Vector dimension 
n: Sequence length

Faster if d>nSelf-attention is ... More parallelizable



Slides by Immanuel Trummer, Cornell University

Attention versus Recurrence

Layer Type Complexity  
per Layer

Sequential 
Operations

Maximum  
Path Length

Self-Attention O(n2*d) O(1) O(1)

Recurrent O(n*d2) O(n) O(n)

d: Vector dimension 
n: Sequence length

Faster if d>nSelf-attention is ... More parallelizable



Slides by Immanuel Trummer, Cornell University

Attention versus Recurrence
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Path Length

Self-Attention O(n2*d) O(1) O(1)

Recurrent O(n*d2) O(n) O(n)

d: Vector dimension 
n: Sequence length

Faster if d>nSelf-attention is ... More parallelizable Easier to learn
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Multi-Head, Multi-Layer Attention Visualization
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Transfer Learning: Idea

Untrained

Text-to-SQL

Not Enough  

Samples!



Slides by Immanuel Trummer, Cornell University

Pre-Training
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Pre-Training

Lorem ... ... Ipsum
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Pre-Training

Marco ... ... Polo
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Pre-Training

New ... ... York
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Pre-Training

Big ... ... Data



Slides by Immanuel Trummer, Cornell University

Pre-Training
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Fine-Tuning

How many  
customers?

SELECT Count(*)  
FROM Customer
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Pre-Training Objectives

Objective Description Examples

Masked 
Language 
Modeling

Predict obfuscated words BERT

Causal 
Language 
Modeling

Predict next word GPT

Denoising 
Objective Correct text with noise BART
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Quantifying Advantages
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Quantifying Advantages
... with only 100 labeled examples, it matches the performance of training from scratch on 100x more data
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Prompting

• Describe task as text input


• Zero-shot learning


• No samples are provided in input


• Few-shot learning


• Few (typically up to ten) samples
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Prompting

• Describe task as text input


• Zero-shot learning


• No samples are provided in input


• Few-shot learning


• Few (typically up to ten) samples

Prompt Formulation Matters!
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Libraries and Interfaces
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Hugging Face (🤗) Transformers
https://huggingface.co/

https://huggingface.co/
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GPT-3 by OpenAI
https://openai.com/api/

https://openai.com/api/
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Applications to  
Data Management
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Natural language interfaces to databases - an
introduction
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Abstract

This paper is an introduction to natural language interfaces to databases (NLIDBS). A brief
overview of the history of NLIDBS is first given. Some advantages and disadvantages of NLIDBS
are then discussed, comparing NLIDBS to formal query languages, form-based interfaces, and
graphical interfaces. An introduction to some of the linguistic problems NLIDBS have to
confront follows, for the benefit of readers less familiar with computational linguistics. The
discussion then moves on to NLIDB architectures, portability issues, restricted natural language
input systems (including menu-based NLIDBS), and NLIDBS with reasoning capabilities. Some
less explored areas of NLIDB research are then presented, namely database updates, meta-
knowledge questions, temporal questions, and multi-modal NLIDBS. The paper ends with
reflections on the current state of the art.

1 Introduction

A natural language interface to a database (NLIDB) is a system that allows the user to
access information stored in a database by typing requests expressed in some natural
language (e.g. English). The following example is a dialogue between the user and
LOQUI, a commercially available NLIDB (Binot et al. 1991) (the dialogue is borrowed
from (BIM 1991); the system's responses are slightly simplified). Throughout this
paper messages printed by a NLIDB are shown in th is typeface; user entries are
shown in this typeface.

> Who works on 3 projects ?
B. Vandecapelle, C. Willems, D. Sedlock, J .L . Binot, L. Deb i l l e ,

> Which of them are project leaders ?
D. Sedlock, J .L. Binot

4 :   195 9 3  . 0 5 421 9 5 2 0 /70 5132 5 2 5 2
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NaLIR: An Interactive Natural Language Interface for
Querying Relational Databases∗

Fei Li
Univ. of Michigan, Ann Arbor

lifei@umich.edu

H. V. Jagadish
Univ. of Michigan, Ann Arbor
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ABSTRACT
In this demo, we present NaLIR, a generic interactive nat-
ural language interface for querying relational databases.
NaLIR can accept a logically complex English language sen-
tence as query input. This query is first translated into
a SQL query, which may include aggregation, nesting, and
various types of joins, among other things, and then eval-
uated against an RDBMS. In this demonstration, we show
that NaLIR, while far from being able to pass the Turing
test, is perfectly usable in practice, and able to handle even
quite complex queries in a variety of application domains.
In addition, we also demonstrate how carefully designed in-
teractive communication can avoid misinterpretation with
minimum user burden.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Natural Language; H.1.2 [Information Systems]:
User/Machine Systems—Human factors

Keywords
Relational Database; Usability; Natural Language Interface;

1. INTRODUCTION
Traditionally, research work in querying data from rela-

tional databases often follows one of two paths: the struc-
tured query approach and the keyword-based approach. Both
approaches have their advantages and disadvantages. The
structured query approach, while expressive and powerful,
is not easy for naive users. The keyword-based approach is
very friendly to use, but cannot express complex query intent
accurately. In contrast, natural language has both advan-
tages to a large extent: even naive users are able to express
complex query intent in natural language. Thus supporting

∗Supported in part by NSF grants IIS 1250880 and IIS
1017296

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594519.

natural language queries is often regarded as the ultimate
goal for a database query interface.

However, progress has been slow, even as general Natural
Language Processing systems have improved over the years.
We believe this is primarily due to the difficulty of trans-
lating user-specified query structure to the actual schema
structure in the database. By addressing this challenge, we
believe we have removed the greatest barrier in natural lan-
guage querying of databases.

In this demo, we describe NaLIR, a generic interactive
natural language interface for querying relational databases.
In NaLIR, an arbitrary English language sentence, which
can be quite complex in logic, is taken as query input. This
query is first translated into a SQL query, which may contain
aggregation, nesting, and various types of joins, among other
things. Then, an RDBMS is used to evaluate the translated
SQL query and return the results to the user. For exam-
ple, the user can write “return the author in database area,
whose papers have the most total citations”, without worry-
ing about the structure of the elements in the database.

We believe that an ideal natural language interface should
work like a database programmer (DBA): when the user tells
the DBA what she wants to query in natural language, the
DBA will first try to fully understand the natural language
query from both a linguistic and a database point of view.
Then, the DBA conveys his understanding, first for some
ambiguous words/phrases and then for the structure of the
sentence, back to the user to avoid misunderstanding. Af-
ter the user agrees on or corrects the DBA’s understanding,
the DBA will compose the SQL query statement, evaluate
it and finally return the results back to the user. Our sys-
tem is designed in this way. In the first step, we use an
off-the-shelf natural language parser to obtain the linguis-
tic understanding (represented by a parse tree) of the input
sentence. In the second step, we transform the linguistic un-
derstanding to a database’s understanding by mapping prox-
imity of the patterns in the parse tree to proximity of corre-
sponding database concept. In order to make sure that the
sentence is correctly understood, we explain the database’s
understanding (the linguistic understanding is included in
the database’s understanding) back to the user in natural
language. Finally, the understanding is translated to a SQL
query statement and evaluated by an RDBMS.

In our system, we focus on the second step: given a parse
tree, how to correctly understand it from the database point
of view. This step is challenging for many reasons. First,
some words/phrases may fail in mapping to database ele-
ments due to the vocabulary restriction of the system. Also,
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Leaderboard of SPIDER benchmark
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PI2: End-to-end Interactive Visualization Interface
Generation from�eries

Yiru Chen
yiru.chen@columbia.edu
Columbia University
New York, NY, USA

Eugene Wu
ewu@cs.columbia.edu
Columbia University
New York, NY, USA

ABSTRACT
Interactive visualization interfaces are critical in data analysis. Yet
creating new interfaces is challenging, as the developer must un-
derstand the queries needed for the desired analysis task, and then
design the appropriate interface. Existing task models are too ab-
stract to be used to automatically generate interfaces, and visu-
alization recommenders do not take the queries nor interactions
into account. PI2 is the �rst system to generate fully functional
interactive visualization interfaces from a representative sequence
of task queries. PI2 analyzes queries syntactically and proposes a
novel D������� representation that encodes the systematic varia-
tions between query abstract syntax trees. PI2 then poses interface
generation as a schema mapping problem from each D������� to
a visualization that renders its results, and the variations encoded
in each D������� to interactions in the interface. Interface gener-
ation further takes the layout and screen size into account. Our
user studies show that PI2 interfaces are comparable to or better
than those designed by developers, and that PI2 can generate ex-
ploration interfaces that are easier to use than the state-of-the-art
SQL notebook products. What’s more, PI2 generates high-quality
interfaces within a few seconds.

CCS CONCEPTS
• Information systems!Datamanagement systems; •Human-
centered computing ! User interface design; Visualization
systems and tools.

KEYWORDS
database usability, interface generation, interface design, data ana-
lytics
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national Conference on Management of Data (SIGMOD ’22), June 12–17,
2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3514221.3526166
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(a) Google Covid Vis (b) This paper: PI2

(c) PI
Figure 1: (a) Google’s Covid-19 visualization. Using queries
in Listing 1, interfaces generated by (b) this paper (PI2) and
(c) prior work (PI).

1 INTRODUCTION
Interactive visualization interfaces (or simply interfaces) are critical
in nearly every stage of data management—including data clean-
ing [74], wrangling [34], modeling [24], exploration [13, 47], and
communication [19, 27]. It requires considerable expertise and trial-
and-error to design a new interface because the charts, interactions,
and layout should be chosen to support the underlying analysis
task [46]. As such, a major goal is to help designers more quickly
and e�ectively translate analysis tasks into interfaces.

What if tasks could be easily and precisely described in a way
that the desired analysis interface could be automatically generated?
Such functionality could enable tools that augment data analyses
with helpful interfaces generated on-the-�y, transform common
analysis patterns in an organization into user-friendly interfaces,
visually summarize programmatic analysis sessions, and drastically
simplify interface authoring. Unfortunately, we are still far from this
goal both in terms of task representation and interface generation.

Visualization task models, such as Brehmer andMunzner’s multi-
level task typology, focus on the user motivations and abstract
steps (e.g., navigate, compare) to accomplish an analysis task [9].
Unfortunately, it is too high level to directly translate into concrete
analysis queries and interface designs, and a more operational task
speci�cation remains an open challenge. At the same time, visu-
alization recommendation systems do not consider the analysis
task [39, 40, 44, 72, 73], and are limited to recommending individual
static charts [77]. In contrast, real-world interfaces are interactive
so the user can express a range of analysis queries, and visual repre-
sentations contain interactive widgets and charts that are laid out
to �t the target screen size. To the best of our knowledge, no such
interface generation system currently exists.

Session 24: Potpourri SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
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SQL notebook products. What’s more, PI2 generates high-quality
interfaces within a few seconds.
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(a) Google Covid Vis (b) This paper: PI2

(c) PI
Figure 1: (a) Google’s Covid-19 visualization. Using queries
in Listing 1, interfaces generated by (b) this paper (PI2) and
(c) prior work (PI).

1 INTRODUCTION
Interactive visualization interfaces (or simply interfaces) are critical
in nearly every stage of data management—including data clean-
ing [74], wrangling [34], modeling [24], exploration [13, 47], and
communication [19, 27]. It requires considerable expertise and trial-
and-error to design a new interface because the charts, interactions,
and layout should be chosen to support the underlying analysis
task [46]. As such, a major goal is to help designers more quickly
and e�ectively translate analysis tasks into interfaces.

What if tasks could be easily and precisely described in a way
that the desired analysis interface could be automatically generated?
Such functionality could enable tools that augment data analyses
with helpful interfaces generated on-the-�y, transform common
analysis patterns in an organization into user-friendly interfaces,
visually summarize programmatic analysis sessions, and drastically
simplify interface authoring. Unfortunately, we are still far from this
goal both in terms of task representation and interface generation.

Visualization task models, such as Brehmer andMunzner’s multi-
level task typology, focus on the user motivations and abstract
steps (e.g., navigate, compare) to accomplish an analysis task [9].
Unfortunately, it is too high level to directly translate into concrete
analysis queries and interface designs, and a more operational task
speci�cation remains an open challenge. At the same time, visu-
alization recommendation systems do not consider the analysis
task [39, 40, 44, 72, 73], and are limited to recommending individual
static charts [77]. In contrast, real-world interfaces are interactive
so the user can express a range of analysis queries, and visual repre-
sentations contain interactive widgets and charts that are laid out
to �t the target screen size. To the best of our knowledge, no such
interface generation system currently exists.
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ABSTRACT
Inferring meta information about tables, such as column headers
or relationships between columns, is an active research topic in
data management as we �nd many tables are missing some of this
information. In this paper, we study the problem of annotating
table columns (i.e., predicting column types and the relationships
between columns) using only information from the table itself. We
develop a multi-task learning framework (called D����) based on
pre-trained language models, which takes the entire table as input
and predicts column types/relations using a single model. Experi-
mental results show that D���� establishes new state-of-the-art
performance on two benchmarks for the column type prediction
and column relation prediction tasks with up to 4.0% and 11.9%
improvements, respectively. We report that D���� can already
outperform the previous state-of-the-art performance with a min-
imal number of tokens, only 8 tokens per column. We release a
toolbox1 and con�rm the e�ectiveness of D���� on a real-world
data science problem through a case study.

CCS CONCEPTS
• Information systems ! Information integration.

KEYWORDS
table understanding, language models, multi-task learning

ACM Reference Format:
Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp,
Chen Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-
trained Language Models. In Proceedings of the 2022 International Conference
on Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3514221.
3517906

∗Work done while the author was at Megagon Labs.
†Deceased.
1https://github.com/megagonlabs/doduo

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3517906

[CLS] Val 1 Val 2 [CLS] Val 3 [CLS] [SEP]Val 5

??? ??? ???

Val 1 Val 3 Val 5

Val 2 Val 4 Val 6

... ...

E1,[CLS] E1,Val 1 E1,Val 2 E2,[CLS] E2,Val 3 E3,[CLS] E3,Val 5 E3,[SEP]

Transformer layer

Transformer layer

Transformer layer

E'1,[CLS] E'1,Val 1 E'1,Val 2 E'2,[CLS] E'2,Val 3 E'3,[CLS] E'3,Val 5 E'3,[SEP]
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Figure 1: Overview ofD����’s model architecture.D���� se-
rializes the entire table into a sequence of tokens to make
it compatible with the Transformer-based architecture. To
handle the column type prediction and column relation ex-
traction tasks, D���� implements two di�erent output lay-
ers on top of column representations and a pair of column
representations, respectively.

1 INTRODUCTION
Meta information about tables, such as column types and relation-
ships between columns (or column relations), is crucial to a vari-
ety of data management tasks, including data quality control [40],
schema matching [37], and data discovery [7]. Recently, there is
an increasing interest in identifying semantic column types and
relations [20, 21, 60]. Semantic column types such as “population”,
“city”, and “birth_date” provide contain �ner-grained, richer infor-
mation than standard DB types such as integer or string. Similarly,
semantic column relations such as a binary relation “is_birthplace_of”
connecting a “name” and a “city” column can provide valuable in-
formation for understanding semantics of the table. For example,
commercial systems (e.g., Google Data Studio [17] , Tableau [41])
leverage such meta information for better table understanding.
However, semantic column types and relations are typically miss-
ing in tables while annotating such meta information manually can
be quite expensive. Thus, it is essential to build models that can
automatically assign meta information to tables.

Figure 2 shows two tables with missing column types and col-
umn relations. The table in Figure 2(a) is about animation �lms
and the corresponding directors/producers/release countries of the
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ABSTRACT
Deep learning based techniques have been recently usedwith
promising results for data integration problems. Some meth-
ods directly use pre-trained embeddings that were trained
on a large corpus such as Wikipedia. However, they may not
always be an appropriate choice for enterprise datasets with
custom vocabulary. Other methods adapt techniques from
natural language processing to obtain embeddings for the
enterprise’s relational data. However, this approach blindly
treats a tuple as a sentence, thus losing a large amount of
contextual information present in the tuple.
We propose algorithms for obtaining local embeddings

that are e�ective for data integration tasks on relational
databases. We make four major contributions. First, we de-
scribe a compact graph-based representation that allows the
speci�cation of a rich set of relationships inherent in the re-
lational world. Second, we propose how to derive sentences
from such a graph that e�ectively “describe" the similarity
across elements (tokens, attributes, rows) in the two datasets.
The embeddings are learned based on such sentences. Third,
we propose e�ective optimization to improve the quality of
the learned embeddings and the performance of integration
tasks. Finally, we propose a diverse collection of criteria to
evaluate relational embeddings and perform an extensive
set of experiments validating them against multiple baseline
methods. Our experiments show that our framework, E��DI,
produces meaningful results for data integration tasks such
as schema matching and entity resolution both in supervised
and unsupervised settings.
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1 INTRODUCTION
Data in an enterprise is often scattered across information
silos. The problem of data integration concerns the combi-
nation of information from heterogeneous relational data
sources [19]. It is a challenging �rst step before data analytics
can be performed to extract value from data. Unfortunately,
it is also an expensive task for humans [33]. An often cited
statistic is that data scientists spend 80% of their time inte-
grating and curating their data [17]. Due to its importance,
the problem of data integration has been studied extensively
by the database community. Traditional approaches require
substantial e�ort from domain scientists to generate features
and labeled data or domain speci�c rules [19]. There has
been increasing interest in achieving accurate data integra-
tion with dramatically less human e�ort.

1.1 Word Embeddings for Data Integration
Embeddings have been successfully used for data integration
tasks such as entity resolution [8, 14, 25, 30, 35, 38], schema
matching [16, 26, 29], identi�cation of related concepts [15],
and data curation in general [24, 36]. Typically, these works
fall into two dominant paradigms based on how they ob-
tain word embeddings. The �rst is to reuse pre-trained word
embeddings computed for a given task. The second is to
build local word embeddings that are speci�c to the dataset.
These methods treat each tuple as a sentence by reusing the

Research 15: Machine Learning for Cleaning, Integration, and Search
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Abstract—Data scientists today search large data lakes to
discover and integrate datasets. In order to bring together
disparate data sources, dataset discovery methods rely on some
form of schema matching: the process of establishing corre-
spondences between datasets. Traditionally, schema matching has
been used to find matching pairs of columns between a source
and a target schema. However, the use of schema matching in
dataset discovery methods differs from its original use. Nowadays
schema matching serves as a building block for indicating
and ranking inter-dataset relationships. Surprisingly, although
a discovery method’s success relies highly on the quality of the
underlying matching algorithms, the latest discovery methods
employ existing schema matching algorithms in an ad-hoc fashion
due to the lack of openly-available datasets with ground truth,
reference method implementations, and evaluation metrics.

In this paper, we aim to rectify the problem of evaluating
the effectiveness and efficiency of schema matching methods for
the specific needs of dataset discovery. To this end, we propose
Valentine, an extensible open-source experiment suite to execute
and organize large-scale automated matching experiments on tab-
ular data. Valentine includes implementations of seminal schema
matching methods that we either implemented from scratch
(due to absence of open source code) or imported from open
repositories. The contributions of Valentine are: i) the definition
of four schema matching scenarios as encountered in dataset
discovery methods, ii) a principled dataset fabrication process
tailored to the scope of dataset discovery methods and iii) the
most comprehensive evaluation of schema matching techniques to
date, offering insight on the strengths and weaknesses of existing
techniques, that can serve as a guide for employing schema
matching in future dataset discovery methods.

I. INTRODUCTION

Virtually every non-trivial, data science task nowadays
begins with data integration. At the core of data integration
lies dataset discovery: the process of navigating numerous
data sources in order to find relevant datasets as well as the
relationships among those datasets. The bulk of work in dataset
discovery, focuses on tabular data [1]–[11] since it constitutes
the main form of datasets in the web and enterprises: web
tables, spreadsheets, CSV files and database relations.

Typically, a dataset discovery method receives a dataset
as input and finds other datasets in a data repository which
are related to it. The ultimate goal of dataset discovery is to
augment a dataset with information previously unknown to the
user. There are many flavors of dataset discovery: i) searching
for tables that can be joined [1], [2], [6], ii) augmenting a
given table with more data entries or extra attributes [3]–[5],
[9], frequently for improving the accuracy of machine learning

models [10], [11], and iii) finding similar tables to a given one
using different similarity measures [7], [8].

The majority of these methods are based on a common,
very critical component: schema matching, i.e., capturing
relationships between elements of different schemata. In the
case of tabular data, dataset discovery methods typically
use schema matching techniques to automatically determine
whether two columns (or even entire tables) are joinable or
unionable. Since dataset discovery methods exploit relatedness
information about a given set of datasets, the underlying
matching technique of any data discovery method greatly
affects its performance.

At the moment of writing, dataset discovery methods typ-
ically implement their own matcher, by combining or cus-
tomizing existing methods. However, the majority of discovery
works do not take advantage of the abundance of schema
matching methods in the literature [12], [13]. This happens
for good reasons: the vast majority of the techniques are
not open-source or available for use, and oftentimes the on-
paper description of algorithms can be vague. Worse, most
methods require setting a vast number of parameters, making
any reproducibility effort a tough or impossible task. Most
importantly, even when a few schema matching methods are
publicly available, employing them into a dataset discovery
pipeline becomes a daunting task: there exists no proper
comparison of the state-of-the-art schema matching techniques
in the literature – an open problem which was stated almost
two decades ago [12].

In this paper, we present the first work towards evaluating
schema matching algorithms on tabular data, for the specific
needs of dataset discovery. Traditionally, schema matching
algorithms have been evaluated for 1-1 matches: for each col-
umn in the source schema, algorithms aim at matching exactly
one column in the target schema. This is limiting for dataset
discovery use cases where users typically navigate ranked lists
of results. We argue that providing ranked lists instead of 1-1
matches, both challenges the traditional matching evaluation
metrics (precision and recall), and requires changes to existing
algorithms. This work aims to facilitate the development of
novel dataset discovery methods by i) automating the schema
matching component, ii) by adapting existing algorithms and
iii) by proposing novel evaluation metrics with Valentine: a
unified, open-source schema matching experiment suite for
dataset discovery.
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ABSTRACT
We present Ditto, a novel entity matching system based on pre-
trained Transformer-based language models. We !ne-tune and cast
EM as a sequence-pair classi!cation problem to leverage such mod-
els with a simple architecture. Our experiments show that a straight-
forward application of language models such as BERT, DistilBERT,
or RoBERTa pre-trained on large text corpora already signi!cantly
improves the matching quality and outperforms previous state-of-
the-art (SOTA), by up to 29% of F1 score on benchmark datasets. We
also developed three optimization techniques to further improve
Ditto’s matching capability. Ditto allows domain knowledge to
be injected by highlighting important pieces of input information
that may be of interest when making matching decisions. Ditto
also summarizes strings that are too long so that only the essential
information is retained and used for EM. Finally, Ditto adapts
a SOTA technique on data augmentation for text to EM to aug-
ment the training data with (di"cult) examples. This way, Ditto is
forced to learn “harder” to improve the model’s matching capability.
The optimizations we developed further boost the performance
of Ditto by up to 9.8%. Perhaps more surprisingly, we establish
that Ditto can achieve the previous SOTA results with at most
half the number of labeled data. Finally, we demonstrate Ditto’s
e#ectiveness on a real-world large-scale EM task. On matching
two company datasets consisting of 789K and 412K records, Ditto
achieves a high F1 score of 96.5%.
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Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew
Tan. Deep Entity Matching with Pre-Trained Language Models. PVLDB,
14(1): 50 - 60, 2021.

doi:10.14778/3421424.3421431

PVLDB Artifact Availability:
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https://github.com/megagonlabs/ditto.

1 INTRODUCTION
Entity Matching (EM) refers to the problem of determining whether
two data entries refer to the same real-world entity. Consider the
two datasets about products in Figure 1. The goal is to determine
the set of pairs of data entries, one entry from each table so that
each pair of entries refer to the same product.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:10.14778/3421424.3421431

If the datasets are large, it can be expensive to determine the pairs
of matching entries. For this reason, EM is typically accompanied
by a pre-processing step, called blocking, to prune pairs of entries
that are unlikely matches to reduce the number of candidate pairs
to consider. As we will illustrate, correctly matching the candidate
pairs requires substantial language understanding and domain-
speci!c knowledge. Hence, entity matching remains a challenging
task even for the most advanced EM solutions.

We present Ditto, a novel EM solution based on pre-trained
Transformer-based language models (or pre-trained language mod-
els in short). We cast EM as a sequence-pair classi!cation problem to
leverage such models, which have been shown to generate highly
contextualized embeddings that capture better language under-
standing compared to traditional word embeddings. Ditto further
improves its matching capability through three optimizations: (1)
It allows domain knowledge to be added by highlighting important
pieces of the input that may be useful for matching decisions. (2) It
summarizes long strings so that only the most essential informa-
tion is retained and used for EM. (3) It augments training data with
(di"cult) examples, which challenges Ditto to learn “harder” and
also reduces the amount of training data required. Figure 2 depicts
Ditto in the overall architecture of a complete EM work$ow.

There are 9 candidate pairs of entries to consider for matching in
total in Figure 1. The blocking heuristic that matching entries must
have one word in common in the title will reduce the number of
pairs to only 3: the !rst entry on the left with the !rst entry on the
right and so on. Perhaps more surprisingly, even though the 3 pairs
are highly similar and look like matches, only the !rst and last pair
of entries are true matches. Our system, Ditto, is able to discern
the nuances in the 3 pairs to make the correct conclusion for every
pair while some state-of-the-art systems are unable to do so.

The example illustrates the power of language understanding
given by Ditto’s pre-trained language model. It understands that
instant immersion spanish deluxe 2.0 is the same as instant immers
spanish dlux 2 in the context of software products even though
they are syntactically di#erent. Furthermore, one can explicitly
emphasize that certain parts of a value are more useful for deciding
matching decisions. For books, the domain knowledge that the
grade level or edition is important for matching books can be made
explicit to Ditto, simply by placing tags around the grade/edition
values. Hence, for the second candidate pair, even though the titles
are highly similar (i.e., they overlap in many words), Ditto is
able to focus on the grade/edition information when making the
matching decision. The third candidate pair shows the power of
language understanding for the opposite situation. Even though
the entries look dissimilar Ditto is able to attend to the right parts
of a value (i.e., the manf./modelno under di#erent attributes) and
also understand the semantics of the model number to make the
right decision.
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ABSTRACT
Foundation Models (FMs) are models trained on large corpora of
data that, at very large scale, can generalize to new tasks without
any task-speci�c �netuning. As these models continue to grow in
size, innovations continue to push the boundaries of what these
models can do on language and image tasks. This paper aims to
understand an underexplored area of FMs: classical data tasks like
cleaning and integration. As a proof-of-concept, we cast three data
cleaning and integration tasks as prompting tasks and evaluate the
performance of FMs on these tasks. We �nd that large FMs general-
ize and achieve SoTA performance on data cleaning and integration
tasks, even though they are not trained for these data tasks. We
identify speci�c research challenges and opportunities that these
models present, including challenges with private and temporal
data, and opportunities to make data driven systems more acces-
sible to non-experts. We make our code and experiments publicly
available at: https://github.com/HazyResearch/fm_data_tasks.

1 INTRODUCTION
FoundationModels (FMs) [17] are models trained on broad data that
can be adapted to a wide range of downstream tasks. These models
have achieved substantial gains across many semantically challeng-
ing tasks such as question answering [18], knowledge base con-
struction [66], and information retrieval [33]. As they have scaled
to hundreds of billions of parameters (e.g. GPT�3 [18], PaLM [20]),
large FMs have demonstrated surprising emergent behaviors and
good zero-shot generalization to new tasks (i.e. no task-speci�c
�netuning) on domains vastly di�erent from the data they were pre-
trained on [20]. These large FMs are often autoregressive language
models (e.g. GPT�3 and PaLM) that are trained to predict the next
word in large text corpora and can be adapted to new tasks given a
simple natural language description of the task (see Figure 1). These
breakthrough capabilities have led to a race for building bigger and
better models, and innovations continue to push the boundaries of
what large FMs can do on a variety of hard language tasks.

A natural question that arises is whether these advances can
bene�t hard classical data tasks (e.g. data cleaning and integration).
While it is clear that FMs bene�t text-intensive tasks, it is not clear
whether these models can be applied to data tasks over structured
data. The symbols commonly found in structured data (e.g. dates,
numbers, alphanumeric codes) are less frequent in natural language
text so it is unclear that FMs possess the ability to reason over them.
Moreover, since FMs are trained to predict the next word, it is non-
obvious that they can work out-of-the-box on complex data tasks.
This paper explores the aforementioned question and introduces
a new research vision for leveraging FMs for data management,
focusing on data cleaning and integration tasks—two keys steps in
data-driven enterprise pipelines.

Recently, a large body of research has applied machine learn-
ing (ML) [41] and deep learning (DL) [46, 62] methods—namely

Title Price

Macbook Pro $1,999.00

Table 1
Title Price

Macbook Air $899.00

Table 2

“Product A is Title: Macbook Pro Price: $1,999
Product B is Title: Macbook Air Price: $899
Are product A and product B the same?”

Foundation Model

No

Figure 1: A large FM can address an entity matching task
using prompting. Rows are serialized into text and passed to
the FM with the question “Are products A and B the same?”.
The FM then generates a string “Yes” or “No” as the answer.

pretrained languagemodels (PLMs) like BERT [27]—to semantically-
complex data tasks. However, these approaches still require a sig-
ni�cant amount of engineering e�ort as they rely on:
• Task-speci�c architectures: Data cleaning and integration en-
capsulatemany di�erent tasks such as entitymatching [64], schema
matching [78], and error detection [34]. Existing approaches,
whether they are rule-, ML- or DL-based vary greatly from one
task to the other, often with task-speci�c, complex architectures.
For instance, adapting BERT to data tasks requires architectural
changes and �netuning the entire model for each task. This leads
to siloed and hard-to-maintain systems.

• Hard-codedknowledge: Data tasks often rely on domain knowl-
edge (e.g. understanding the relationship between a city and its
zip code for data cleaning constraints) and commonsense reason-
ing. These are usually hard-coded with human-engineered rules
or external knowledge bases [22, 71]. Consequently, systems can
be brittle and fail to generalize to a diverse set of domains.

• Labeled data: ML- and DL-based solutions require a lot of hand-
labeled data [9]. For instance, PLMs that have achieved state-
of-the-art (SoTA) results on data tasks (e.g. Ditto [32]) require a
signi�cant amount of task-speci�c labeled data and �ne-tuning
to achieve good performance. Labeling data for each task is engi-
neering intensive and adds to the di�culty of maintaining data
cleaning and integration systems.
Excitingly, FMs display several useful properties that make them

an appealing choice compared to traditional approaches:
• Task-agnostic architecture: As a result of their natural lan-
guage interface, FMs can be applied to a wide-range of tasks. For
instance, Figure 1 shows how an entity matching task—which
requires identifying whether two table entries refer to the same
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ABSTRACT
Can AI help automate human-easy but computer-hard data prepara-
tion tasks that burden data scientists, practitioners, and crowd work-
ers?We answer this question by presenting RPT, a denoising autoen-
coder for tuple-to-X models (“X ” could be tuple, token, label, JSON,
and so on). RPT is pre-trained for a tuple-to-tuple model by corrupt-
ing the input tuple and then learning a model to reconstruct the
original tuple. It adopts a Transformer-based neural translation ar-
chitecture that consists of a bidirectional encoder (similar to BERT)
and a left-to-right autoregressive decoder (similar to GPT), leading
to a generalization of both BERT and GPT. The pre-trained RPT can
already support several common data preparation tasks such as data
cleaning, auto-completion and schema matching. Better still, RPT
can be �ne-tuned on a wide range of data preparation tasks, such
as value normalization, data transformation, data annotation, etc.
To complement RPT, we also discuss several appealing techniques
such as collaborative training and few-shot learning for entity res-
olution, and few-shot learning and NLP question-answering for
information extraction. In addition, we identify a series of research
opportunities to advance the �eld of data preparation.
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Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Sam
Madden, and Mourad Ouzzani. RPT: Relational Pre-trained Transformer Is
Almost All You Need towards Democratizing Data Preparation. PVLDB,
14(8): 1254 - 1261, 2021.
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1 INTRODUCTION
Data preparation — including data cleaning [1], data transforma-
tion [31], entity resolution [24], information extraction [10], and
so forth — is the most time-consuming and least enjoyable work
for data scientists [18]. Next, we present several scenarios to better
understand these problems.

Scenario 1: Data Cleaning. Figure 1(a) Q1 and Q2 show two typ-
ical data cleaning problems. (i) Cell Filling: Question Q1 asks for

⇤ Ju Fan is the corresponding author.
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<latexit sha1_base64="VbzSbnmdJaP568yLMzT896PumY0="></latexit>

type description label
notebook 2.3GHz 8-Core, 1TB Storage, 8GB memory,

16-inch Retina display
8GB

phone 6.10-inch touchscreen, a resolution of
828x1792 pixels, A14 Bionic processor, and
come with 4GB of RAM

Berkeley

(a) Sample Tasks for Value Filling ([M]: value to fill)

(c) A Sample Information Extraction Task (s1: example, t1: task)

(b) A Sample Entity Resolution Task

city

Cafarella

4GB

Q1: r1[name, expertise, city] = (Michael Jordan, Machine Learning, [M])

A1:

Q3: r2[name, expertise, [M]] = (Michael Jordan, Basketball, New York City)

A3: 

Q2: r3[name, affiliation] = (Michael [M], CSAIL MIT)

A2:

<latexit sha1_base64="PELJVxOArAWGr52Nf6vBT8UXjxI="></latexit>

product company year memory screen
iPhone 10 Apple 2017 64GB 5.8 inchs
iPhone X Apple Inc 2017 256GB 5.8-inch
iPhone 11 AAPL 2019 128GB 6.1 inches

e1
e2
e3

s1

t1

Figure 1: Motivating Scenarios.

the city for the “Michael Jordan” whose expertise is “Machine
Learning”. (ii) Value Filling: Q2 asks for the last name of someone
who works at “CSAIL MIT” with the �rst name “Michael”.

Answering Q1 can help solve a series of problems such as er-
ror detection, data repairing, and missing value imputation; and
answering Q2 can help auto-completion (e.g., give the answer A2
“Cafarella”) and auto-suggestion (e.g., provide a list of candidate
names such as {Cafarella, Stonebraker}).

Scenario 2: Attribute Filling for Schema Matching. Figure 1(a) Q3
asks for the attribute name for the value “New York City”, w.r.t.
name “Michael Jordan” and expertise “Basketball”. Answering
this question can help schema matching, a core data integration
problem [21], by better aligning attributes from di�erent tables.

Scenario 3: Entity Resolution (ER) Figure 1(b) shows a typical ER
task that asks whether e1, e2 and e3 are the “same”.

A human with enough knowledge can tell that “iPhone 10” =
“iPhone X” , “iPhone 11”, “Apple” = “Apple Inc” = “AAPL”, and
“inches” = “-inch”. Hence, one can decide that e1 and e2 do not
match e3, and e1 matches e2 (if the memory does not matter).

Scenario 4: Information Extraction (IE) Figure 1(c) shows an IE
task, which is typically done via crowdsourcing [39]. A requester
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ABSTRACT
DB-BERT is a database tuning tool that exploits information gained
via natural language analysis of manuals and other relevant text
documents. It uses text to identify database system parameters to
tune as well as recommended parameter values. DB-BERT applies
large, pre-trained language models (speci�cally, the BERT model)
for text analysis. During an initial training phase, it �ne-tunes
model weights in order to translate natural language hints into
recommended settings. At run time, DB-BERT learns to aggregate,
adapt, and prioritize hints to achieve optimal performance for a
speci�c database system and benchmark. Both phases are iterative
and use reinforcement learning to guide the selection of tuning
settings to evaluate (penalizing settings that the database system
rejects while rewarding settings that improve performance). In our
experiments, we leverage hundreds of text documents about data-
base tuning as input for DB-BERT. We compare DB-BERT against
various baselines, considering di�erent benchmarks (TPC-C and
TPC-H), metrics (throughput and run time), as well as database
systems (Postgres and MySQL). In all cases, DB-BERT �nds the
best parameter settings among all compared methods. The code of
DB-BERT is available online at https://itrummer.github.io/dbbert/.

CCS CONCEPTS
• Information systems ! Autonomous database adminis-
tration; • Computing methodologies ! Information extraction;
Reinforcement learning.

KEYWORDS
database performance tuning; text mining; reinforcement learning
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1 INTRODUCTION
Give me a user manual, and I’m happy for hours.

— Lennon Parham
When all else fails, read the instructions.

— Anonymous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
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and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3517843

Table 1: Example tuning hints with extractions.

Text Snippet Extraction

The default value of shared_buffer is
set very low ... The recommended value
is 25% of your total machine RAM. [23]

shared_buffers
= 0.25 · '�"

I changed ‘random_page_cost’ to 1 and
retried the query. This time, PostgreSQL
used a Nested Loop and the query �n-
ished 50x faster. [21]

random_page_cost
= 1

On a dedicated database server, you
might set the bu�er pool size to 80%
of the machine’s physical memory
size. [19]

innodb_buffer_
pool_size
= 0.8 · '�"

Manuals are useful. For instance, before starting to tune a data-
base management system (DBMS), it is recommended to read the
associated manual. So far, those words of wisdom only seemed
to apply to human database administrators. While it is widely ac-
knowledged that database manuals contain useful information, this
knowledge has long been considered inaccessible to machines due
to barriers in natural language understanding. We believe that this
has changed with recent advances in the �eld of natural language
processing, namely by the introduction of powerful, pre-trained
language models based on the Transformer architecture [29]. We
present DB-BERT, a tuning tool, based on the BERT model [3],
that “reads” (i.e., analyzes via natural language tools) the manual
and hundreds of text documents with tuning hints in order to �nd
promising settings for database system parameters faster.

The problem of �nding optimal values for DBMS parameters
(also called “tuning knobs”) for speci�c workloads and performance
metrics has received signi�cant attention in recent years. DBMS
nowadays feature hundreds of parameters [22], making it very hard
to �nd optimal settings manually. This motivates computational
methods for automated parameter tuning. The dominant approach
is currently machine learning [1], in particular reinforcement learn-
ing [14, 27, 34]. Here, a tuning tool selects value combinations for
DBMS parameters to try in a principled manner, guided by the
results of benchmark runs for speci�c settings. However, this ap-
proach is expensive (recent work uses hundreds of iterations per
tuning session [27]) and works best if guided by input from data-
base experts [11], pre-selecting a small set of parameters to tune
and reasonable value ranges to consider. Our goal is to substitute
such input by information that is gained automatically by analyzing
text documents. We call the corresponding problem variant Natural
Language Processing (NLP)-Enhanced Database Tuning.

Session 3: ML for Data Management 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
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ABSTRACT
Structured data, or data that adheres to a pre-de�ned schema, can
su�er from fragmented context: information describing a single
entity can be scattered across multiple datasets or tables tailored
for speci�c business needs, with no explicit linking keys. Context
enrichment, or rebuilding fragmented context, using keyless joins is
an implicit or explicit step in machine learning (ML) pipelines over
structured data sources. This process is tedious, domain-speci�c,
and lacks support in now-prevalent no-code ML systems that let
users createML pipelines using just input data and high-level con�g-
uration �les. In response, we propose E����, a system that abstracts
and automates keyless joins to generalize context enrichment. Our
key insight is that E���� can enable a general keyless join operator
by constructing an index populated with task-speci�c embeddings.
E���� learns these embeddings by leveraging Transformer-based
representation learning techniques. We describe our architectural
principles and operators when developing E����, and empirically
demonstrate that E���� allows users to develop no-code context
enrichment pipelines for �ve domains, including search, recom-
mendation and question answering, and can exceed alternatives by
up to 39% recall, with as little as a single line con�guration change.
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1 INTRODUCTION
Machine learning (ML) systems that extract semantic context from
unstructured data have revolutionized domains spanning computer
vision [47] and natural language processing [24, 66]. Unfortunately,
applying these systems to structured and semi-structured datasets
with pre-de�ned schemas is challenging as their context is often

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494149

(A) Goal: Downstream ML

     ITEM is a joinable key,

         Make == Brand, 
     Description  → 

{Make, Color},
               {Brand, Model}

D
ow

nstream
 

Tasks

(C) Existing Approach: Manual Joins

 KFK Join.  Keyless Join.  

Normalized Ratings Table

USER ITEM Rating
U888 A80 8/10
??? A82 ???

ShoeShop, Ext Catalog B

ID Brand Model
P5 Puma UltraRide
P8 Asics GT-1000 8

ShoeMart, Ext Catalog C

ITEM Size Make Color
A79 7 Puma Black
A80 8 Asics Blue

Domain-specific analyses to join A, B, C Enriched Data

(D)EMBER: replace & automate

Predict Recommend

(B) Challenge: Info scattered across three catalogs 

Proprietary Catalog A

ITEM Description
A81 The newest Pegasus...
A82 Blue Asics GT-1000 9...

Figure 1: An end-to-end task requiring context enrichment.
Predicting the rating of and recommending a new product
(A82), requires relating the Asics products (highlighted in
dark gray) via a keyless join (top). This process is manual
due to data heterogeneity—we aim to automate it (bottom).

fragmented: they scatter information regarding a data record across
domain-speci�c datasets with unique schemas. For instance, in
Figure 1B, information about A���� shoes is scattered across three
catalogs with unique schemas. These schemas are optimized for
task-speci�c querying and often lack explicit linking keys, such as
primary key-foreign key (KFK) relationships. This constrains users
to a single view of an entity, specialized for a speci�c business need.

Associating these fragmented data contexts is critical to enable
ML-powered applications—a preprocessing procedure we denote as
context enrichment—yet is a heavily manual endeavor due to task
and dataset heterogeneity. Engineers develop solutions for context
enrichment tailored to their task, such as similarity-based blocking
in data integration [62], retrievermodels in question answering [91],
or retrieval functions in search [71] (see Section 2). Constructing
these independent solutions is repetitive, time-consuming, and
results in a complicated landscape of overlapping, domain-speci�c
methods. For instance, consider the scenario depicted in Figure 1:

An e-commerce company has a proprietary product catalog, and ag-
gregates product information from several external vendors to perform
market analysis. Each vendor uses a unique product catalog, each with
unique product representations (i.e., schema) ranging from free-form
text to tabular product descriptions; products may overlap and evolve

���
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ABSTRACT
CodexDB enables users to customize SQL query processing via
natural language instructions. CodexDB is based on OpenAI’s GPT-
3 Codex model which translates text into code. It is a framework
on top of GPT-3 Codex that decomposes complex SQL queries into
a series of simple processing steps, described in natural language.
Processing steps are enriched with user-provided instructions and
descriptions of database properties. Codex translates the resulting
text into query processing code. An early prototype of CodexDB
is able to generate correct code for up to 81% of queries for the
WikiSQL benchmark and for up to 62% on the SPIDER benchmark.
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1 INTRODUCTION
CodexDB processes SQL queries while allowing far-ranging cus-
tomization without expert developer skills. Users specify natural
language instructions, along with their queries, which in!uences
code generated for query processing. The enabling technology for
this system is OpenAI’s GPT-3 Codex model. Codex is a large neural
network, currently available via a private beta test, that translates
natural language instructions into code. This paper presents "rst
experimental results and an outlook on future steps.

The range of applications is vast. To name just a few, consider
the following use cases.

Example 1.1. A developer wants to benchmark di#erent data
processing frameworks (e.g., Pandas and Vaex in Python or Table-
saw and Morpheus in Java) on a speci"c SQL workload and hard-
ware platform. Traditionally, doing so requires either modifying
an existing database management system or writing query-speci"c
code from scratch. With CodexDB, that developer speci"es queries,
together with natural language instruction such as “Use pandas
library”. While CodexDB may not succeed at generating code for
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551841

each workload query, obtaining performance results for a subset
can guide future development e#orts. Also, generated code can be
manually validated and reused in case of recurrent queries.

Example 1.2. A user needs help “debugging” a complex SQL
query. To that purpose, the user wants to print intermediate results
during query processing. CodexDB allows users formulating natural
language instructions that are executed after each processing step.
Instructing CodexDB to “Print intermediate results” has the desired
e#ect and helps with query debugging.

CodexDB accepts queries, together with natural language in-
structions, as input. These instructions customize the way in which
queries are executed. CodexDB generates code to process queries
while complying with additional instructions. A "rst option is to
submit queries and instructions directly to GPT-3 for code genera-
tion. We will see in Section 4 that this approach does not work.

Instead, CodexDB adapts techniques from classical query plan-
ning. It decomposes complex SQL queries into sequences of simple
processing steps. In contrast to prior work, those steps are for-
mulated in natural language using corresponding text templates.
Finally, automatically generated plan steps are interleaved with
user-provided instructions. The resulting text is enriched with in-
formation about the database schema and physical layout. The
"nal text is submitted to GPT-3 Codex (as a so-called “prompt”).
Using this approach as a starting point, CodexDB generates code
for sample queries in a training step. The resulting code samples
can be integrated into prompts generated at run time to increase
the chances of success. An early prototype of CodexDB generates
correct code in many cases for two popular text-to-SQL bench-
marks. Also, it is able to customize generated code using simple
instructions, inspired by the use cases outlined before.

The original scienti"c contributions are the following:
• The paper presents the vision behind CodexDB, a system

that processes SQL queries while allowing customization
via natural language instructions.

• The paper discusses "rst experimental results, based on an
early prototype of CodexDB.

• The paper outlines next steps and future research.
The remainder of this paper is organized as follows. Section 2

discusses recent progress in natural language processing and com-
pares CodexDB to prior work. Section 3 describes the architecture
of the "rst prototype. Section 4 reports "rst experimental results in
multiple scenarios. Section 5 discusses future research plans.

2 BACKGROUND AND RELATED WORK
CodexDB is enabled by recent advances in the domain of natural
language processing. Those advances have been fuelled by two key

����
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ABSTRACT
In recent years, neural networks have shown impressive perfor-
mance gains on long-standing AI problems, such as answering
queries from text and machine translation. These advances raise
the question of whether neural nets can be used at the core of query
processing to derive answers from facts, even when the facts are
expressed in natural language. If so, it is conceivable that we could
relax the fundamental assumption of databasemanagement, namely,
that our data is represented as !elds of a pre-de!ned schema. Fur-
thermore, such technology would enable combining information
from text, images, and structured data seamlessly.

This paper introduces neural databases, a class of systems that
use NLP transformers as localized answer derivation engines. We
ground the vision in NeuralDB, a system for querying facts repre-
sented as short natural language sentences. We demonstrate that
recent natural language processing models, speci!cally transform-
ers, can answer select-project-join queries if they are given a set of
relevant facts. However, they cannot scale to non-trivial databases
nor answer set-based and aggregation queries. Based on these in-
sights, we identify speci!c research challenges that are needed to
build neural databases. Some of the challenges require drawing
upon the rich literature in data management, and others pose new
research opportunities to the NLP community. Finally, we show
that with preliminary solutions, NeuralDB can already answer
queries over thousands of sentences with very high accuracy.
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1 INTRODUCTION
Researchers have long considered the application of neural nets to
data management problems, including learning indices [16], query
optimization, data cleaning and entity matching [20, 23, 32]. In
applying neural networks to data management, research has so far
assumed that the data was modeled by a database schema.

The success of neural networks in processing unstructured data
such as natural language and images raises the question of whether
their use can be extended to a point where we can relax the fun-
damental assumption of database management, which is that the
data we process is represented as !elds of a pre-de!ned schema.
What if, instead, data and queries can be represented as short nat-
ural language sentences, and queries can be answered from these
sentences? Furthermore, what if relevant data from images can be
seamlessly combined with text and structured data?

This paper describes a vision for neural databases and prelim-
inary empirical evidence of its potential. Neural databases o"er
several bene!ts that database systems have struggled to support
for decades. The !rst, and most important bene!t, is that a neural
database has no pre-de!ned schema. Therefore, the scope of the
database does not need to be de!ned in advance, and any data
that becomes relevant as the application is used can be stored and
queried. The second bene!t is that updates and queries can be posed
in a variety of natural language forms, as is convenient to any user.
In contrast, a traditional database query needs to be based on the
database schema. Even when the data is modeled with a more #exi-
ble formalism such as RDF, there is still a single name for any given
relation, and that name needs to be used in updates and queries.
Third, with recent advances in machine translation, the language
of queries and answers can be di"erent from the language of the
data in the neural database. A !nal bene!t comes from the fact
that the neural database is based on a pre-trained language model
that already contains a lot of knowledge which can be exploited to
generate better answers to more diverse queries.

To ground our vision, we built NeuralDB, a database system
in which updates and queries are given as short natural language
sentences. Figure 1 shows example facts and queries thatNeuralDB
can answer. Our preliminary experiments show that NeuralDB
can answer select-project-join-aggregate queries over thousands of
natural language sentences with very high accuracy.

By nature, neural databases are not meant to provide the same
correctness guarantees of a traditional database system, i.e., that the
answers to queries satisfy the precise binary semantics of the query
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Conclusions

• Significant progress in natural language processing


• Transformer Model


• Transfer Learning


• Various interfaces and libraries


• New applications in data management
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